[1]Liverani E, Fortunato A, Leardini A, et al. Fabrication of Co-Cr-Mo endoprosthetic ankle devices by means of selective laser melting (SLM)[J]. Materials and Design, 2016, 106: 60-68. [2]朱文志, 党明珠, 田 健, 等. 激光能量密度对激光选区熔化Cu-Al-Ni-Ti合金相对密度, 微观组织和力学性能的影响[J]. 机械工程学报, 2020, 56(15): 53-64. Zhu Wenzhi, Dang Mingzhu, Tian Jian, et al. Effect of laser energy density on relative density, microstructure and mechanical properties of Cu-Al-Ni-Ti alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(15): 53-64. [3]曾 强, 吴 颖, 肖辉进, 等. 油气工程用Inconel 718合金激光焊接头的氢脆行为[J]. 金属热处理, 2020, 45(8): 50-55. Zeng Qiang, Wu Ying, Xiao Huijin, et al. Hydrogen embrittlement behavior of oilfield-grade Inconel 718 alloy laser welded joint[J]. Heat Treatment of Metals, 2020, 45(8): 50-55. [4]孙艳容, 王 杰, 杨 锦, 等. 热处理制度对IN718变形合金组织和性能的影响[J]. 金属热处理, 2018, 43(12): 152-159. Sun Yanrong, Wang Jie, Yang Jin, et al. Effect of heat treatment on microstructure and mechanical properties of IN718 deformed alloy[J]. Heat Treatment of Metals, 2018, 43(12): 152-159. [5]Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718[J]. Additive Manufacturing, 2019, 30: 100877. [6]Chen Y, Guo Y B, Xu M J, et al. Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser[J]. Materials Science and Engineering, 2019, 754: 339-347. [7]Zhang B C, Xiu M Z, Tan Y T, et al. Pitting corrosion of SLM Inconel 718 sample under surface and heat treatments[J]. Applied Surface Science, 2019, 490: 556-567. [8]Zhu Z G, Nguyen Q B, Ng F L, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154: 20-42. [9]Li Z, He B, Guo Q. Strengthening and hardening mechanisms of additively manufactured stainless steels: The role of cell sizes[J]. Scripta Materialia, 2020, 177: 17-21. [10]Gallmeyer T G, Moorthy S, Kappes B B, et al. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718[J]. Additive Manufacturing, 2020, 31: 100977. [11]Schneider J, Lund B, Fullen M. Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens[J]. Additive Manufacturing, 2018, 21: 248-254. [12]Cao G H, Sun T Y, Wang C H, et al. Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting[J]. Materials Characterization, 2018, 136: 398-406. [13]彭子超, 谢发勤, 张 军, 等. 过冷度对IN718高温合金组织演化影响[J]. 稀有金属材料与工程, 2013, 42(10): 1988-1992. Peng Zichao, Xie Faqin, Zhang Jun, et al. Effect of undercooling on microstructure evolution in IN718 superalloy[J]. Rare Metal Materials and Engineering, 2013, 42(10): 1988-1992. [14]郑 欣, 师玉英, 陈玉宝. 时效处理对GH4169合金组织和性能的影响[J]. 金属热处理, 2018, 43(6): 162-165. Zheng Xin, Shi Yuying, Chen Yubao. Efect of aging on the microstructure and properties of GH4169 alloy[J]. Heat Treatment of Metals, 2018, 43(6): 162-165. [15]Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392. [16]Zhong Y, Liu L, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting[J]. Journal of Nuclear Materials, 2016, 470: 170-178. [17]Luo S C, Huang W P, Yang H H, et al. Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments[J]. Additive Manufacturing, 2019, 30: 100875. [18]宋宜四, 高万夫, 王 超, 等. 热处理工艺对Inconel 718合金组织, 力学性能及耐蚀性能的影响[J]. 材料工程, 2012(6): 37-42. Song Yisi, Gao Wanfu, Wang Chao, et al. Effect of heat treatment technology on microstructure, mechanical property and corrosion resistance of nickel-base alloy Inconel 718[J]. Materials Engineering, 2012(6): 37-42. |