[1]熊庆人, 霍春勇, 李为卫, 等. 9%Ni钢亚温淬火处理工艺参数试验研究[J]. 材料热处理学报, 2017, 38(2): 136-142. Xiong Qingren, Huo Chunyong, Li Weiwei, et al. Experimental investigation of intercritical hardening of a 9%Ni steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 136-142. [2]Nakanishi D, Kawabata T, Aihara S, et al. Effect of dispersed retained γ-Fe on brittle crack arrest toughness in 9%Ni steel in cryogenic temperatures[J]. Materials Science and Engineering A, 2018, 723: 238-246. [3]Kubo N, Takata M, Yamashita M, et al. Development of 7%Ni-TMCP steel plate for LNG storage tanks[J]. Quarterly Journal of the Japan Weldging Society, 2010, 28(1): 130-140. [4]许立雄, 武会宾, 牟 丹. 两相区淬火对7Ni钢微观组织和力学性能的影响[J]. 材料工程, 2018, 46(8): 113-119. Xu Lixiong, Wu Huibin, Mou Dan. Effect of quenching in dual-phase region on microstructure and mechanical properties of 7Ni steel[J]. Journal of Materials Engineering, 2018, 46(8): 113-119. [5]朱绪祥, 刘东升. 低C含7.7%Ni低温钢经两相区淬火后的组织性能[J]. 钢铁, 2013, 48(11): 72-78, 83. Zhu Xuxiang, Liu Dongsheng. Microstructure and mechanical properties of a low carbon 7.7%Ni steel subjected to intercritical quenching[J]. Iron and Steel, 2013, 48(11): 72-78, 83. [6]Sohn S S, Hong S, Lee J, et al. Effects of Mn and Al contents on cryogenic-temperature tensile and charpy impact properties in four austenitic high-Mn steels[J]. Acta Materialia, 2015, 100: 39-52. [7]Gumus B, Bal B, Gerstein G, et al. Twinning activities in high-Mn austenitic steel under high-velocity compresive loading[J]. Materials Science and Engineering: A, 2015, 648: 104-112. [8]Kim H, Ha Y, Kwon K H, et al. Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C-(22-26)Mn steels[J]. Acta Materialia, 2015, 87: 332-343. [9]张 雷, 刘 浩, 齐祥羽, 等. 热处理对高强韧中锰钢特厚板组织与性能的影响[J]. 金属热处理, 2017, 42(2): 141-145. Zhang Lei, Liu Hao, Qi Xiangyu, et al. Effect of heat treatment on microstructure and mechanical properties of high strength and toughness medium-manganese steel ultra-heavy plate[J]. Heat Treatment of Metals, 2017, 42(2): 141-145. [10]Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate[J]. Materials Science and Engineering A, 2016, 675: 153-163. [11]赵宏禹, 刘荣佩, 王长军, 等. QLT与QT热处理工艺对9Ni低温钢性能的影响[J]. 金属热处理, 2018, 43(12): 100-104. Zhao Hongyu, Liu Rongpei, Wang Changjun, et al. Influence of QLT and QT heat treatment process on properties of 9Ni steel[J]. Heat Treatment of Metals, 2018, 43(12): 100-104. [12]Rautioaho R, Karjalainen P, Moilanen M. Stress response of Barkhausen noise and coercive force in 9Ni steel[J]. Journal of Magnetism and Magnetic Materials, 1987, 68(3): 321-327. [13]李华瑞. 材料X射线衍射分析使用方法[M]. 北京: 冶金工业出版社, 1994: 39-48. [14]周峰峦, 王存宇, 雷志国, 等. 0.13C-5Mn中锰钢的裂纹扩展行为[J]. 钢铁, 2019, 54(12): 75-80, 88. Zhou Fengluan, Wang Cunyu, Lei Zhiguo, et al. Crack propagation behavior of medium manganese automobile steel in 0.13C-5Mn[J]. Iron and Steel, 2019, 54(12): 75-80, 88. [15]Yan Ning, Di Hongshuang, Misra R D K, et al. Enhancing austenite stability in a new medium-Mn steel by combining deep cryogenic treatment and intercritical annealing: An experimental and theoretical study[J]. Materials Science & Engineering A, 2019, 753: 11-21. [16]熊庆人, 霍春勇. 不同状态9%Ni钢低温强韧性研究[J]. 合肥工业大学学报(自然科学版), 2019, 42(5): 621-626. Xiong Qingren, Huo Chunyong. Experimental investigation of low-temperature obdurability of 9%Ni steel under different heat treatment[J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(5): 621-626. [17]李荣斌, 秦品强, 陈永强, 等. 不同两相区淬火温度对9Ni钢组织与性能的影响[J]. 金属热处理, 2021, 46(7): 18-22. Li Rongbin, Qin Pinqiang, Chen Yongqiang, et al. Effect of different intercritical quenching temperature on microstructure and properties of 9Ni Steel[J]. Heat Treatment of Metals, 2021, 46(7): 18-22. [18]Sugimoto K, Masahiro M, Kobayashi M, et al. Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP aided dual-phase steel sheet[J]. Transactions of the Iron and Steel Institute of Japan, 1993, 33(7): 775-782. [19]Kim S J, Lee C G, Choi I, et al. Effects of heat treatment and alloying elements on the microstructures and properties of 0.15wt pct C transformation-induced plasticity-aided cold rolled steet sheets[J]. Metallurgical Transactions A, 2001, 32(3): 505-514. |