[1] 朱 胜, 周超极. 面向“中国制造2025”的增材再制造技术[J]. 热喷涂技术, 2016, 8(3): 1-4. Zhu Sheng, Zhou Chaoji. Additive remanufacturing for “Made in China 2025”[J]. Thermal Spray Technology, 2016, 8(3): 1-4. [2]傅戈雁, 石世宏, 刘义伦. 核阀零件激光熔覆层耐磨抗蚀性能对比研究[J]. 中国机械工程, 1999, 10(12): 1424-1427. Fu Geyan, Shi Shihong, Liu Yilun. Study on resistance to wear and corrosion of laser cladding layer on the nuclear valve parts[J]. China Mechanical Engineering, 1999, 10(12): 1424-1427. [3]Tamanna N, Crouch R, Naher S. Progress in numerical simulation of the laser cladding process[J]. Optics and Lasers in Engineering, 2019, 122: 151-163. [4]Weng F, Chen C Z, Yu H J. Research status of laser cladding on titanium and its alloys: A review[J]. Materials and Design, 2014, 58: 412-425. [5]徐爱琴. 核阀密封面无钴镍基合金激光熔覆层组织性能研究[D]. 苏州: 苏州大学, 2012. [6]李必文, 张春良, 金坤文. 核阀密封面FCo-5合金粉末激光熔覆层的组织与性能[J]. 粉末冶金材料科学与工程, 2014(1): 159-164. Li Biwen, Zhang Chunliang, Jin Kunwen. Microstructure and performance of laser cladding layer of FCo-5 alloy powder on nuclear valve sealing surface[J]. Materials Science and Engineering of Powder Metallurgy, 2014(1): 159-164. [7]Colaco R, Vilar R. Effect of the processing parameters on the proportion of retained austenite in laser surface melted tool steels[J]. Journal of Materials Science Letters, 1998, 17(7): 563-567. [8]Nakada N, Fukagawa R, Tsuchiyama T, et al. Inheritance of dislocations and crystallographic texture during martensitic reversion into austenite[J]. ISIJ International, 2013, 53(7): 1286-1288. [9]陈 鹰, 陈再枝, 董 瀚, 等. 合金工模具钢Fe-M-C淬火马氏体回火的二次硬化研究进展[J]. 特殊钢, 2004, 25(2): 35-38. Chen Ying, Chen Zaizhi, Dong Han, et al. Advance in research of tempering secondary hardening of alloy tool and die steel Fe-M-C quenched martensite[J]. Special Steel, 2004, 25(2): 35-38. [10]杨丽霞, 马龙腾, 陈正宗, 等. 回火温度对9Cr-3W-3Co马氏体钢组织和硬度的影响[J]. 金属热处理, 2018, 43(6): 153-158. Yang Lixia, Ma Longteng, Chen Zhengzong, et al. Effect of tempering temperature on microstructure and hardness of 9Cr-3W-3Co martensitic steel[J]. Heat Treatment of Metals, 2018, 43(6): 153-158. [11]郑善举, 杨卯生, 张启富, 等. 氮元素对马氏体不锈钢组织和性能的影响[J]. 材料热处理学报, 2017, 38(1): 100-105. Zheng Shanju, Yang Maosheng, Zhang Qifu, et al. Effect of nitrogen element on microstructure and properties of martensitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 100-105. [12]孙永庆, 刘振宝, 王长军, 等. N含量对0Cr16Ni5Mo马氏体不锈钢力学性能和组织的影响[J]. 金属热处理, 2019, 44(3): 69-73. Sun Yongqing, Liu Zhenbao, Wang Changjun, et al. Effect of N content on mechanical properties and microstructure of 0Cr16Ni5Mo martensitic stainless steel[J]. Heat Treatment of Metals, 2019, 44(3): 69-73. [13]Saha D C, Biro E, Gerlich A P, et al. Effects of tempering mode on the structural changes of martensite[J]. Materials Science and Engineering A, 2016, 673: 467-475. [14]张盛华, 王 培, 李殿中, 等. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究[J]. 金属学报, 2015, 51(11): 1306-1314. Zhang Shenghua, Wang Pei, Li Dianzhong, et al. Investigation of trip effect in ZG06Cr13Ni4Mo martensitic stainless steel by in situ synchrotron high energy X-ray diffraction[J]. Acta Metallurgica Sinica, 2015, 51(11): 1306-1314. [15]朱红梅, 李勇作, 邱长军, 等. 激光熔覆制备马氏体/铁素体双相不锈钢层的力学与腐蚀性能研究[J]. 中国激光, 2018, 45(12): 148-153. Zhu Hongmei, Li Yongzuo, Qiu Changjun, et al. Mechanical and corrosion properties of martensite/ferrite duplex stainless steel prepared via laser cladding[J]. Chinese Journal of Lasers, 2018, 45(12): 148-153. [16]米丰毅, 王向东, 汪 兵, 等. 显微组织对低碳钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2010, 30(5): 391-395. Mi Fengyi, Wang Xiangdong, Wang Bing, et al. Effect of microstructure on corrosion resistance of low-carbon steel[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(5): 391-395. |