[1]Dong S, Liu T, Li Y, et al. Hot deformation processing capability of Fe-contained high Nb TiAl-based alloy[J]. Vacuum, 2019, 159: 391-399. [2]Chen L, Edwards T E J, Gioacchino F D, et al. Crystal plasticity analysis of deformation anisotropy of lamellar TiAl alloy: 3D microstructure-based modelling and in-situ micro-compression[J]. International Journal of Plasticity, 2019, 119: 344-360. [3]Wan Z, Sun Y, Hu L, et al. Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy[J]. Materials and Design, 2017, 122: 11-20. [4]Han J K, Li X, Dippenaar R, et al. Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion[J]. Materials Science and Engineering A, 2018, 714: 84-92. [5]Li P T, Yang Y Q, Xia Z, et al. Molecular dynamic simulation of nanocrystal formation and tensile deformation of TiAl alloy[J]. RSC Advances, 2017, 7(76): 48315-48323. [6]Zhang W, Yang Y Q, Zhao G M, et al. Microstructure evolution of TiAl matrix in the process of magnetron sputtering and hot isostatic pressing for fabricating TiAl/SiCf composites[J]. Intermetallics, 2013, 39: 5-10. [7]Zong Y, Wen D, Liu Z, et al. γ-Phase transformation, dynamic recrystallization and texture of a forged TiAl-based alloy based on plane strain compression at elevated temperature[J]. Materials and Design, 2016, 91: 321-330. [8]Cui N, Kong F, Wang X, et al. Hot deformation behavior and dynamic recrystallization of a β-solidifying TiAl alloy[J]. Materials Science and Engineering A, 2016, 652: 231-238. [9]Hirel P. Atomsk: A tool for manipulating and converting atomic data files[J]. Computer Physics Communications, 2015, 197: 212-219. [10]Cao P, Wu J, Zhang Z, et al. Mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus[J]. Nanotechnology, 2017, 28(4): 045702-045706. [11]Luo H, Sheng H, Zhang H, et al. Plasticity without dislocations in a polycrystalline intermetallic[J]. Nature Communication, 2019, 10(1): 3587-3592. [12]Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. [13]Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system[J]. Physical Review B, 2003, 68(2): 024102-024110. [14]Bohn R, Klassen T, Bormann R. Room temperature mechanical behavior of silicon-doped TiAl alloys with grain sizes in the nano-and submicron-range[J]. Acta Materialia, 2001, 49(2): 299-311. [15]Kanani M, Hartmaier A, Janisch R. Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys[J]. Acta Materialia, 2016, 106: 208-218. [16]Tang F L, Cai H M, Bao H W, et al. Molecular dynamics simulations of void growth in γ-TiAl single crystal[J]. Computational Materials Science, 2014, 84: 232-237. [17]Song H Y, Li Y L, An M R. Atomic simulations of the effect of twist grain boundaries on deformation behavior of nanocrystalline copper[J]. Computational Materials Science, 2014, 84: 40-44. [18]Hall E O. The deformation and ageing of mild steel: III discussion of results[J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747-752. [19]Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium[J]. Acta Materialia, 1997, 45(10): 4019-4025. [20]Abad O T, Wheeler J M, Michler J, et al. Temperature-dependent size effects on the strength of Ta and W micropillars[J]. Acta Materialia, 2016, 103: 483-494. [21]Ding J, Tian Y, Wang L S, et al. Micro-mechanism of the effect of grain size and temperature on the mechanical properties of polycrystalline TiAl[J]. Computational Materials Science, 2019, 158: 76-87. |