[1]Lu Zhiguo, Du Chuanyu, Chen Qingcai, et al. Wear and friction characteristics of 65Mn steel for spike-tooth harrow[J]. Coatings, 2021, 11(3): 319-332. [2]牛翰卿, 王晓莉, 王玉刚, 等. 热处理工艺对ZG65Mn深松铲组织和性能影响[J]. 铸造技术, 2020, 41(10): 910-912. Niu Hanqing, Wang Xiaoli, Wang Yugang, et al. Effect of heat treatment process on microstructure and mechanical properties of ZG65Mn subsoiling shovel[J]. Foundry Technology, 2020, 41(10): 910-912. [3]董天顺, 李国禄, 刘金海, 等. 中碳Si-Mn系贝氏体/马氏体复相耐磨钢热处理工艺及性能[J]. 材料热处理学报, 2014, 35(7): 75-80. Dong Tianshun, Li Guolu, Liu Jinhai, et al. Heat treatment and property of medium carbon Si-Mn multiphase wear-resistant steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(7): 75-80. [4]孟 亮, 李 雄, 黄永俊, 等. 激光淬火及熔覆技术提高柑橘枝粉粉碎机65Mn钢锤片耐磨性[J]. 农业工程学报, 2018, 34(17): 54-60. Meng Liang, Li Xiong, Huang Yongjun, et al. Improvement on wear resistance of citrus twig grinding hammer of 65Mn steel by laser quenching and laser cladding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 54-60. [5]王海淞, 马跃进, 李建昌, 等. 深松铲氩弧熔覆TiC/Ni复合涂层组织和性能研究[J]. 热加工工艺, 2016, 45(14): 127-132. Wang Haisong, Ma Yuejin, Li Jianchang, et al. Study on microstructure and properties of TiC/Ni composite coating on sub-soling shovel prepared by argon arc cladding[J]. Hot Working Technology, 2016, 45(14): 127-132. [6]王宏立, 张 伟, 申玉军, 等. 激光淬火65Mn钢表面摩擦磨损性能研究[J]. 应用激光, 2015, 35(6): 652-656. Wang Hongli, Zhang Wei, Shen Yujun, et al. Study on friction and wear behaviors of 65Mn steel surface laser quenching[J]. Applied Laser, 2015, 35(6): 652-656. [7]蔡志海, 张 平, 杜 军, 等. 65Mn钢基体CrTiAlN微纳米复合膜的制备与抗高温磨损性能研究[J]. 稀有金属材料与工程, 2010, 39(S1): 336-340. Cai Zhihai, Zhang Ping, Du Jun, et al. Investigation of preparation technology and tribological properties at high-temperature of CrTiAlN composite films on 65Mn steel substrates[J]. Rare Metal Materials and Engineering, 2010, 39(S1): 336-340. [8]张伟林, 赵靖宇, 王光辉, 等. 盐浴氮碳共渗对65Mn弹簧钢耐磨性的影响[J]. 表面技术, 2017, 46(2): 127-132. Zhang Weilin, Zhao Jingyu, Wang Guanghui, et al. Effects of salt bath nitrocarburizing on wear resistance of 65Mn spring steel[J]. Surface Technology, 2017, 46(2): 127-132. [9]陈亚茹, 李 晖. 旋耕刀表面强流脉冲电子束改性后的耐磨性研究[J]. 材料保护, 2017, 50(8): 84-88. Chen Yaru, Li Hui. Wear resistance of rotary tiller blades treated by high current pulsed electron beam[J]. Materials Protection, 2017, 50(8): 84-88. [10]Selcukel B, Ipek R, Karamis M B, et al. An investigation on surface properties of treated low carbon and alloyed steels (boriding and carburing)[J]. Journal of Materials Processing Technology, 2000, 103(2): 310-317. [11]Yuan Xingdong, Xu Bin, Cai Yucheng. A novel RE-chrome-boronizing technology assisted by fast multiple rotation rolling treatment at low temperature[J]. Applied Surface Science, 2015, 357: 2285-2289. [12]Liu Dan, Duan Yonghua, Bao Weizong, et al. Characterization and growth kinetics of boride layers on Ti-5Mo-5V-8Cr-3Al alloy by pack boriding with CeO2[J]. Materials Characterization, 2020, 164: 110362-110374. [13]苏学虎. 1Cr13不锈钢硼-碳复合渗工艺及其性能[J]. 金属热处理, 2021, 46(6): 120-125. Su Xuehu. Boron-carburizing process of 1Cr13 stainless steel and its properties[J]. Heat Treatment of Metals, 2021, 46(6): 120-125. [14]蔡守禄, 谢 飞, 潘建伟, 等. 以渗硼为主的交流电场增强粉末法硼铝共渗工艺优化[J]. 金属热处理, 2020, 45(7): 194-197. Cai Shoulu, Xie Fei, Pan Jianwei, et al. Optimization of alternating current field enhanced pack boron-aluminizing boriding-based[J]. Heat Treatment of Metals, 2020, 45(7): 194-197. [15]Türkmen İ, Yalamaç E. Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method[J]. Journal of Alloy and Compounds, 2018, 744: 658-666. [16]Ouyang Delai, Cui Xia, Lu Shiqing. Growth kinetics of the FeB/Fe2B boride layer on the surface of 4Cr5MoSiV1 steel: Experiments and modeling[J]. Journal of Materials Research and Technology, 2021, 11: 1272-1280. [17]王宏宇, 赵玉凤, 许晓静, 等. 热处理对65Mn钢表面渗硼层组织和性能的影响[J]. 材料热处理学报, 2012, 33(12): 142-146. Wang Hongyu, Zhao Yufeng, Xu Xiaojing, et al. Effects of heat treatment on microstructure and properties of boriding layer on 65Mn steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(12): 142-146. [18]王宏宇, 吴志奎, 袁晓明, 等. 激光辐照对渗硼后65Mn钢组织和性能的影响[J]. 材料热处理学报, 2014, 35(5): 176-180. Wang Hongyu, Wu Zhikui, Yuan Xiaoming, et al. Effects of laser irradiation on microstructure and properties of boronized 65Mn steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(5): 176-180. [19]吴宝善, 谢泽嘉, 何 力. 固体渗硼层中孔洞成因的探讨[J]. 材料热处理学报, 1985, 6(2): 20-29. Wu Baoshan, Xie Zejia, He Li. An investigation on the mechanism of forming voids in the boronized layer by packing method[J]. Transactions of Materials and Heat Treatment, 1985, 6(2): 20-29. [20]Filonenko N Y, Galdina O M. Effect of carbon on the physical and structural properties of boride Fe2B[J]. Physics and Chemistry of Solid State, 2016, 17(2): 251-255. [21]Litoria A K, Figueroa C A, Bim L T, et al. Pack-boriding of low alloy steel: microstructure evolution and migration behavior of alloying elements[J]. Philosophical Magazine, 2020, 100(3): 353-378. [22]Kulka M, Makuch N, Piasecki A. Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron[J]. Surface and Coatings Technology, 2017, 325: 515-532. [23]Mektes M, Calik A, Ucar N, et al. Pack-boriding of Fe-Mn binary alloys: Characterization and kinetics of the boride layers[J]. Materials Characterization, 2010, 61(2): 233-239. [24]Pereira R, Mariani F, Neto A, et al. Characterization of layers produced by boriding and boriding-PVD on AISI D2 tool steel[J]. Materials Performance and Characterization, 2016, 5(4): 406-413. [25]Wu Jing, Chong Xiaoyu, Jiang Yehua, et al. Stability, electronic structure, mechanical and thermodynamic properties of Fe-Si binary compounds[J]. Journal of Alloys and Compounds, 2017, 693: 859-870. [26]Elias-espinosa M, Ortiz-domínguez M, Keddam M, et al. Growth kinetics of the Fe2B layers and adhesion on Armco iron substrate[J]. Journal of Materials Engineering and Performance, 2014, 23: 2943-2952. [27]Ortiz-domínguez M, Zuno-Silva J, Keddam M, et al. Diffusion model and characterization of Fe2B layers on AISI 1018 steel[J]. International Journal of Surface Science and Engineering, 2015, 9(4): 281-297. [28]Campos I, Bautista O, Ramírez G, et al. Effect of boron paste thickness on the growth kinetics of Fe2B boride layers during the boriding process[J]. Applied Surface Science, 2005, 243(1-4): 429-436. [29]Su Z G, Lv X X, An J, et al. Role of Re element Nd on boronizing kinetics of steels[J]. Journal of Materials Engineering and Performance, 2012, 21: 1337-1345. [30]Ozdemir O, Omar M A, Usta M, et al. An investigation on boriding kinetics of AISI 316 stainless steel[J]. Vacuum, 2008, 83(1): 175-179. [31]Ortiz-domínguez M, Keddam M, Elias-espinosa M, et al. Characterization and boriding kinetics of AISI T1 steel[J]. Metallurgical Research and Technology, 2018, 116: 102-112. [32]Keddam M, Ortiz-domínguez M, Elias-espinosa M, et al. Growth kinetics of the Fe2B coating on AISI H13 steel[J]. Transactions of the Indian Institute of Metals, 2015, 68: 433-442. [33]杨彦飞, 谢 飞. 频率对交流电场增强45钢低温粉末法硼铝共渗的影响[J]. 金属热处理, 2019, 44(5): 106-110. Yang Yanfei, Xie Fei. Effect of frequency on alternating current field enhanced pack boron-aluminizing on 45 steel at low temperature[J]. Heat Treatment of Metals, 2019, 44(5): 106-110. |