[1]Niu Libin, Hojamberdiev Mirabbos, Xu Yunhua, et al. Preparation of in situ-formed WC/Fe composite on gray cast iron substrate by a centrifugal casting process[J]. Journal of Materials Processing Technology, 2010, 210(14): 1986-1990. [2]Li Zulai, Jiang Yehua, Zhou Rong, et al. Dry three-body abrasive wear behavior of WC reinforced iron matrix surface composites produced by V-EPC infiltration casting process[J]. Wear, 2007, 262(5/6): 649-654. [3]Tomita T, Tatatani Y, Kobayashi Y, et al. Durability of WC/Co sprayed coatings in molten pure zinc[J]. ISIJ International, 1993, 33(9): 982-988. [4]张蕾涛, 李海涛, 贾润楠, 等. 激光重熔Ni60/50%WC复合涂层的制备及性能[J]. 金属热处理, 2021, 46(5): 229-234. Zhang Leitao, Li Haitao, Jia Runnan, et al. Preparation and properties of laser remelted Ni60/50%WC composite coating[J]. Heat Treatment of Metals, 2021, 46(5): 229-234. [5]Bolelli Giovanni, Boerner Tim, Milanti Andrea, et al. Tribological behavior of HVOF-and HVAF-sprayed composite coatings based on Fe-alloy+WC-12%Co[J]. Surface and Coatings Technology, 2014, 248: 104-112. [6]Li Bo, Yao Jianhua, Zhang Qunli, et al. Microstructure and tribological performance of tungsten carbide reinforced stainless steel composite coatings by supersonic laser deposition[J]. Surface and Coatings Technology, 2015, 275: 58-68. [7]陆海峰, 潘晨阳, 覃恩伟, 等. 45钢表面激光熔覆WC/Ni基合金复合覆层的组织和性能[J]. 金属热处理, 2019, 44(12): 19-24. Lu Haifeng, Pan Chenyang, Qin Enwei, et al. Microstructure and properties of laser clad WC/Ni-based alloy composite coating on 45 steel surface[J]. Heat Treatment of Metals, 2019, 44(12): 19-24. [8]Lou D, Hellman J, Luhulima D, et al. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites[J]. Materials Science and Engineering A, 2003, 340(1-2): 155-162. [9]Zhang Zhanzhan, Chen Yunbo, Zhang Yang, et al, Tribology characteristics of ex-situ and in-situ tungsten carbide particles reinforced iron matrix composites produced by spark plasma sintering[J]. Journal of Alloys and Compounds, 2017, 704: 260-268. [10]Zhang Zhanzhan, Chen Yunbo, Zuo Lingli, et al. The effect of volume fraction of WC particles on wear behavior of in-situ WC/Fe composites by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2017, 69: 196-208. [11]张展展, 陈蕴博, 张 洋, 等. 4放电等离子烧结 WC/Fe复合材料摩擦磨损性能[J]. 复合材料学报, 2017, 34(10): 2288-2295. Zhang Zhanzhan, Chen Yunbo, Zhang Yang, et al. Tribology characteristics of WC/Fe composites by spark plasma sintering[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2288-2295. [12]Zhang Zhanzhan, Chen Yunbo, Zuo Lingli, et al. In situ synthesis WC reinforced iron surface composite produced by spark plasma sintering and casting[J]. Materials Letters, 2018, 210: 227-230. [13]汪亚飞, 谢敬佩, 王文焱, 等. 热处理工艺对碳钢/不锈钢双液铸造复合板界面显微组织的影响[J]. 金属热处理, 2018, 43(9): 166-170. Wang Yafei, Xie Jingpei, Wang Wenyan, et al. Effect of heat treatment on interface microstructure of carbon steel/stainless steel dual-liquid casting composite plate[J]. Heat Treatment of Metals, 2018, 43(9): 166-170. [14]Zhou Shengfeng, Zeng Xiaoyan. Growth characteristics and mechanism of carbides precipitated in WC-Fe composite coatings by laser induction hybrid rapid cladding[J]. Journal of Alloys and Compounds, 2010, 505: 685-691. [15]Antoni-Zdziobek A, Shen J Y, Durand-Charre M. About one stable and three metastable eutectic microconstituents in the Fe-W-C system[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26: 372-382. [16]Hackenberg R E, Shiflet G J. Transitions in carbide morphology in a ternary Fe-CW steel[J]. Metallurgical and Materials Transactions A, 1998, 29(8): 2087-2100. [17]Wang Jiandong, Li Liqun, Tao Wang. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition[J]. Optics and Laser Technology, 2016, 82: 170-182. [18]Zhou Shengfeng, Zeng Xiaoyan. Growth characteristics and mechanism of carbides precipitated in WC-Fe composite coatings by laser induction hybrid rapid cladding[J]. Journal of Alloys and Compounds, 2014, 596: 48-54. [19]Yuan Youlu, Li Zhuguo. Microstructure and tribology behaviors of in-situ WC/Fe carbide coating fabricated by plasma transferred arc metallurgic reaction[J]. Applied Surface Science, 2017, 423: 13-24. [20]李 鑫, 付永红, 刘金颂, 等. 扩散反应制备WC/Fe复合层的断裂韧性[J]. 金属热处理, 2019, 44(8): 95-99. Li Xin, Fu Yonghong, Liu Jinsong, et al. Fracture toughness of WC/Fe composite layer through in situ reaction[J]. Heat Treatment of Metals, 2019, 44(8): 95-99. [21]张 宁, 倪 琪. 电冶熔铸WC颗粒增强钢基复合材料的干滑动摩擦磨损性能[J]. 金属热处理, 2017, 42(8): 11-15. Zhang Ning, Ni Qi. Dry sliding friction and wear behavior of WC particle reinforced steel matrix composites by electroslag melting and casting[J]. Heat Treatment of Metals, 2017, 42(8): 11-15. [22]Pan Yafei, Liu Aijun, Huang Lei, et al. Effects of metal binder content and carbide grain size on the microstructure and properties of SPS manufactured WC-Fe composites[J]. Journal of Alloys and Compounds, 2019, 784: 519-526. |