[1]陈胤桢, 郝 红, 王利发, 等. 7050-T7451铝合金低周疲劳平均应力松弛规律[J]. 材料科学与工程学报, 2013, 31(3): 427-431. Chen Yinzhen, Hao Hong, Wang Lifa, et al. Mean stress relaxation during low-cycle fatigue of aluminum alloy 7050-T7451[J]. Journal of Materials Science and Engineering, 2013, 31(3): 427-431. [2]钱晓明, 姜银方, 管海兵, 等. 飞机结构件紧固孔强化技术综述[J]. 机械强度, 2011, 33(5): 749-753. Qian Xiaoming, Jiang Yinfang, Guan Haibing, et al. Research and application of strengthening technology for fastening holes of aircraft structures[J]. Journal of Mechanical Strength, 2011, 33(5): 749-753. [3]Ivo Cerny, Jiri SIs, Dagmar Mikulova. Short fatigue crack growth in an aircraft Al-alloy of a 7075 type after shot peening[J]. Surface & Coatings Technology, 2014, 243: 20-27. [4]姜银方, 刘 委, 赵 勇, 等. 小孔构件超声挤压强化力学特性对比[J]. 工具技术, 2018, 52(3): 44-48. Jiang Yinfang, Liu Wei, Zhao Yong, et al. Comparative investigation of mechanical properties of small hole component with ultrasonic extrusion strengthening[J]. Tool Engineering, 2018, 52(3): 44-48. [5]李应红. 激光冲击强化理论与技术[M]. 北京: 科学出版社, 2013: 6. [6]李松夏, 乔红超, 赵吉宾, 等. 激光冲击强化技术原理及研究发展[J]. 光电工程, 2017, 44(6): 569-576. Li Songxia, Qiao Hongchao, Zhao Jibin, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 569-576. [7]杨 康, 王贵成. 5A03铝合金的激光强化作用及抗应力腐蚀性能研究[J]. 热加工工艺, 2019, 48(4): 99-104. Yang Kang, Wang Guicheng. Study on laser shock processing and stress corrosion resistance of 5A03 aluminum alloy[J]. Hot Working Technology, 2019, 48(4): 99-104. [8]Servando D Cuellar, Michael R Hill, Adrian T Dewald, et al. Residual stress and fatigue life in laser shock peened open hole samples[J]. International Journal of Fatigue, 2012, 44: 8-13. [9]赵 勇, 姜银方, 彭涛涛, 等. 激光冲击强化铝合金小孔构件的疲劳寿命研究[J]. 航空制造技术, 2017(13): 38-43. Zhao Yong, Jiang Yinfang, Peng Taotao, et al. Research on fatigue life of aluminum alloy with fastener hole by laser shock processing[J]. Aeronautical Manufacturing Technology, 2017(13): 38-43. [10]周 磊, 李应红, 翟旭升, 等. 利用激光冲击强化提高均压孔结构的疲劳寿命[J]. 南京航空航天大学学报, 2010, 42(3): 379-382. Zhou Lei, Li Yinghong, Zhai Xusheng, et al. Fatigue-life improvement of symmetrical pressure hole by laser shock processing[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(3): 379-382. [11]车志刚, 杨 杰, 巩水利, 等. 激光冲击强化TC4 钛合金表面自纳米化研究(英文)[J]. 稀有金属材料与工程, 2014, 43(5): 1056-1060. Che Zhigang, Yang Jie, Gong Shuili, et al. Self-nanocrystallization of Ti-6Al-4V alloy surface induced by laser shock processing[J]. Rare Metal Materials and Engineering, 2014, 43(5): 1056-1060. [12]Ren X D, Zhang Y K, Yong H F, et al. Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy[J]. Materials Science and Engineering A, 2011, 528: 2899-2903. [13]Hu Y X, Yao Z Q, Wang F, et al. Study on residual stress of laser shock processing based on numerical simulation and orthogonal experimental design[J]. Surface Engineering, 2007, 23(6): 470-478. [14]何卫锋, 李应红, 李启鹏, 等. LSP提高TC6钛合金振动疲劳性能及强化机理研究[J]. 稀有金属材料与工程, 2013, 42(8): 1643-1648. He Weifeng, Li Yinghong, Li Qipeng, et al. Vibration fatigue performance and strengthening mechanism of TC6 titanium alloy by laser shock peening[J]. Rare Metal Materials and Engineering, 2013, 42(8): 1643-1648. [15]李 振. 基于激光冲击的钛合金小孔构件残余应力分布及疲劳性能研究[D]. 镇江: 江苏大学, 2016. Li Zhen. Investigation of residual stress and fatigue performance of titanium alloy part with hole by laser shock processing[D]. Zhenjiang: Jiangsu University, 2016. [16]代 鹏. 用塑性修正的应力强度因子幅描述疲劳裂纹扩展[D]. 上海: 上海交通大学, 2014: 18. Dai Peng. Fatigue crack growth behavior predicted by plasticity-corrected stress intensity factor range[D]. Shanghai: Shanghai Jiao Tong University, 2014: 18. |