[1]Frommeyer G, Bruex U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Research, 2006, 77(9/10): 627-633. [2]杨富强, 宋仁伯, 李亚萍, 等. 退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响[J]. 材料研究学报, 2015, 29(2): 108-114. Yang Fuqiang, Song Renbo, Li Yaping, et al. Effect of annealing temperature on properties of cold rolled Fe-Mn-Al-C low density steel[J]. Chinese Journal of Materials Research, 2015, 29(2): 108-114. [3]刘少尊, 厉 勇, 王春旭, 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120-124. Liu Shaozun, Li Yong, Wang Chunxu, et al. Effect of solution treatment on microstructure and properties of Fe-Mn-Al-C low density steel[J]. Heart Treatment of Metals, 2015, 40(9): 120-124. [4]Zhao C, Song R, Zhang L, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel[J]. Materials and Design, 2016, 91(2): 348-360. [5]Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel[J]. Acta Materialia, 2016, 109: 213-222. [6]Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight[J]. Materials Science and Engineering A, 2011, 528(15): 5196-5203. [7]Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe-Mn-Al-C steel[J]. Materials and Design, 2015, 76(7): 32-39. [8]Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature[J]. Materials Science and Engineering A, 2013, 586: 276-283. [9]Liu D, Cai M, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Materials Science and Engineering A, 2017, 715: 25-32. [10]Ding H, Li H Y, Devesh K, et al. Strengthening mechanisms in low density Fe-26Mn-xAl-1C steels[J]. Steel Research International, 2017, 89(9): 1700381. [11]Hwang J H, Trang T T T, Lee O, et al. Improvement of strength-ductility balance of B2-strengthened lightweight steel[J]. Acta Materialia, 2020, 191: 1-12. [12]Ding H, Han D, Cai Z, et al. Microstructures and mechanical behavior of Fe-18Mn-10Al-(0.8-1.2)C steels[J]. JOM, 2014, 66(9): 1821-1827. [13]Zhang J L, Raabe D. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics[J]. Acta Materialia, 2017, 141: 374-387. [14]Huang H, Yang G, Zhao G, et al. Effect of Nb on the microstructure and properties of Ti-Mo microalloyed high-strength ferritic steel[J]. Materials Science and Engineering A, 2018, 736(24): 148-155. [15]Zargaran A, Kim H S, Kwak J H. Effects of Nb and C additions on the microstructure and tensile properties of lightweight ferritic Fe-8Al-5Mn alloy[J]. Scripta Materialia, 2014, 89: 37-40. [16]Li Z, Wang Y C, Cheng X W, et al. The effect of Ti-Mo-Nb on the microstructures and tensile properties of a Fe-Mn-Al-C austenitic steel[J]. Acta Materialia, 2020, 780: 139-146. [17]Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518: 77-82. [18]Cheng Weichun. Phase transformations of an Fe-0.85C-17.9Mn-7.1Al austenitic steel after quenching and annealing[J]. JOM, 2014, 66(9): 1809-1820. [19]Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties[J]. Science and Technology of Advanced Materials, 2013, 14(1): 014205. [20]Rahnama A, Kotadia H, Sridhar S. Effect of Ni alloying on the microstructural evolution and mechanical properties of two duplex light-weight steels during different annealing temperatures: Experiment and phase-field simulation[J]. Acta Materialia, 2017, 132: 627-643. [21]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. Yong Qilong. The second phase in iron and steel[M]. Beijing: Metallurgical Industry Press, 2006. |