[1]王义衡, 马竹叶, 曹建林. OCr21Ni6Mn9N耐高温不锈钢及其在冲压发动机上的应用[J]. 推进技术, 1985(4): 80-87. [2]张海涛, 郭 凡, 贤福超, 等. 退火处理对0Cr21Ni6Mn9N钢管析出行为的影响[J]. 热加工工艺, 2016, 45(12): 207-209. Zhang Haitao, Guo Fan, Xian Fuchao, et al. Effect of annealing treatment on precipitation behavior of 0Cr21Ni6Mn9N steel pipe[J]. Hot Working Technology, 2016, 45(12): 207-209. [3]Marcia S Domack. Fracture toughness and flaw growth in nitronic 40 at cryogenic temperatures[N]. NASA Technical Paper, 1984. [4]孙秀魁, 徐 坚. 氢在21-6-9奥氏体不锈钢中的渗透[J]. 中国腐蚀与防护学报, 1987(4): 274-280. Sun Xiukui, Xu Jian. Permeation of hydrogen in 21-6-9 austenitic stainless steel[J]. Journal of Chinese Society for Corrosion and Protection, 1987(4): 274-280. [5]胡春文, 王晓震, 金建军, 等. 退火工艺对21-6-9奥氏体不锈钢组织的影响[J]. 金属热处理, 2015, 40(2): 127-131. Hu Chunwen, Wang Xiaozhen, Jin Jianjun, et al. Effect of annealing on microstructure of 0Cr21Ni6Mn9N austenitic stainless steel[J]. Heat Treatment of Metals, 2015, 40(2): 127-131. [6]Hills C R, Rack H J. Effect of shock deformation on the residual strength and microstructure of nitronic 40 stainless steel[J]. Materials Science and Engineering, 1981, 51(2): 231-239. [7]Whiteman G, Keightley P T, Millett J. The behaviour of 2169 steel under uniaxial stress and uniaxial strain loading[J]. Journal of Dynamic Behavior of Materials, 2016, 2(3): 337-346. [8]刘树勋, 刘宪民, 刘 蕤, 等. 0Cr21Ni6Mn9N奥氏体不锈钢的应变强化行为[J]. 钢铁研究学报, 2005, 17(4): 40-44. Liu Shuxun, Liu Xianmin, Liu Rui, et al. Work-hardening behavior of 0Cr21Ni6Mn9N austenitic stainless steel[J]. Journal of Iron and Steel Research, 2005, 17(4): 40-44. [9]吴勇军. 改善00Cr21Ni6Mn9N不锈钢管晶间腐蚀性能的研究[J]. 特钢技术, 2008, 14(2): 15-18. Wu Yongjun. Improvement on intergranular corrosion property of 00Cr21Ni6Mn9N stainless steel pipe[J]. Special Steel Technology, 2008, 14(2): 15-18. [10]吴勇军. 00Cr21Ni6Mn9N高强度不锈钢管的试制[J]. 特钢技术, 2010, 16(3): 24-27. Wu Yongjun. Trial-production of high strength stainless steel tube 00Cr21Ni6Mn9N[J]. Special Steel Technology, 2010, 16(3): 24-27. [11]李兵兵, 陈海涛, 郎宇平, 等. 含铜超级奥氏体不锈钢的固溶行为[J]. 金属热处理, 2020, 45(11): 68-72. Li Bingbing, Chen Haitao, Lang Yuping, et al. Solution behavior of copper-containing super austenitic stainless steel[J]. Heat Treatment of Metals, 2020, 45(11): 68-72. [12]黄建宁, 徐掌印, 富晓阳, 等. 敏化处理对含氮奥氏体不锈钢抗腐蚀性能的影响[J]. 金属热处理, 2019, 44(5): 52-56. Huang Jianning, Xu Zhangyin, Fu Xiaoyang, et al. Effect of sensitization treatment on corrosion resistance of nitrogen-containing austenitic stainless steel[J]. Heat Treatment of Metals, 2019, 44(5): 52-56. [13]陆世英, 张廷凯, 康喜范. 不锈钢[M]. 北京: 原子能出版社, 1995. [14]谢敬佩, 王文焱, 王爱琴, 等. 铌、氮在中锰奥氏体钢中的作用[J]. 钢铁研究学报, 2002, 14(1): 38-41. Xie Jingpei, Wang Wenyan, Wang Aiqin, et al. Effects of Nb and N in medium manganese austenitic steel[J]. Journal of Iron and Steel Research, 2002, 14(1): 38-41. [15]郎宇平, 陈海涛, 翁宇庆, 等. 热力学计算在高氮奥氏体不锈钢研究中的应用[J]. 材料工程, 2013(5): 16-22. Lang Yuping, Chen Haitao, Weng Yuqing, et al. Applications of Thermo-Calc in research of high nitrogen austenitic stainless steels[J]. Materials Engineering, 2013(5): 16-22. [16]薛忍让, 宋志刚, 郑文杰, 等. 氮对316L晶粒尺寸和力学性能的影响[J]. 钢铁研究学报, 2013, 25(10): 36-41, 46. Xue Renrang, Song Zhigang, Zheng Wenjie, et al. Effect of adding nitrogen on grain size and mechanical properties of 316L[J]. Journal of Iron and Steel Research, 2013, 25(10): 36-41, 46. [17]王松涛. 高氮奥氏体不锈钢的力学行为及氮的作用机理[D]. 北京: 中国科学院研究生院(理化技术研究所), 2008. Wang Songtao. Mechanical behaviors and mechanisms of nitrogen effect of high nitrogen austenitic stainless steels[D]. Beijing: Graduate School of Chinese Academy of Sciences (Technical Institute of Physics and Chemistry), 2008. |