[1]Rahman M S, Ding J, Beheshti A, et al. Elevated temperature tribology of Ni alloys under helium environment for nuclear reactor applications[J]. Tribology International, 2018, 123: 372-384. [2]Jiang X, Liu W, Zhong M. Microstructure and dry sliding wear behavior of MoS2/TiC/Ni composite coatings prepared by laser cladding [J]. Surface and Coatings Technology, 2006, 200(14-15): 4227-4232. [3]徐 进, 朱旻昊, 周仲荣, 等. 聚四氟乙烯基粘结固体润滑涂层微动磨损性能研究[J]. 中国机械工程, 2003, 14(20): 1786-1788. Xu Jin, Zhu Minhao, Zhou Zhongrong, et al. Fretting wear behavior of PTFE-based bonded solid lubrication coatings[J]. China Mechanical Engineering, 2003, 14(20): 1786-1788. [4]Reinert L, Green I, Gimmler S, et al. Tribological behavior of self-lubricating carbon nanoparticle reinforced metal matrix composites[J]. Wear, 2018, 408-409: 72-85. [5]Liu Y, Wu Y, Ma Y M, et al. High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc[J]. Applied Surface Science, 2019, 481: 761-766. [6]Li X, Zhang C H, Zhang S, et al. Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology [J]. Optics and Laser Technology, 2019, 114: 209-215. [7]Yan H, Chen Z, Zhao J, et al. Enhancing tribological properties of WS2/NbC/Co-based self-lubricating coating via laser texturing and laser cladding two-step process [J]. Journal of Materials Research and Technology, 2020, 9(5): 9907-9919. [8]Yan H, Zhang J, Zhang P, et al. Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold [J]. Surface and Coatings Technology, 2013, 232: 362-369. [9]Conceição L d, D'Oliveira A S C M. The effect of oxidation on the tribolayer and sliding wear of a Co-based coating[J]. Surface & Coatings Technology, 2016, 288: 69-78. [10]Shahri Z, Allahkaram S R, Zarebidaki A. Electrodeposition and characterization of Co-BN(h) nanocomposite coatings[J]. Journal of Materials Research and Technology, 2020, 9(5): 9907-9919. [11]段晋辉, 裴 旺, 梁 银, 等. WS2/TiB2固体润滑涂层的结构及摩擦性能[J]. 金属热处理, 2016, 41(3): 104-109. Duan Jinhui, Pei Wang, Liang Yin, et al. Microstructure and friction properties of WS2/TiB2 solid self-lubricant coating[J]. Heat Treatment of Metals, 2016, 41(3): 104-109. [12]Huang X Y, Wang J H, Zhang H Q, et al. WC-Ni-Cr-based self-lubricating composites fabricated by pulsed electric current sintering with addition of WS2 solid lubricant [J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 158-162. [13]Li C, Duan L C, Tan S C, et al. Study on the effectiveness of WS2 and CaF2 on the performances of self-lubricating micro impregnated diamond bits [J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105021. [14]刘慧强, 崔功军, 师睿博, 等. MoS2/CoCrNi自润滑复合涂层及高温摩擦学性能[J]. 稀有金属材料与工程, 2020, 49(12): 4280-4289. Liu Huiqiang, Cui Gongjun, Shi Ruibo, et al. MoS2/CoCrNi self-lubricating composite coating and high-temperature tribological properties[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4280-4289. [15]Xiao J K, Zhang W, Zhang C. Microstructure evolution and tribological performance of Cu-WS2 self-lubricating composites [J]. 2018, 412-413: 109-119. [16]Zhang P L, Liu X P, Lu Y L, et al. Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding[J]. Applied Surface Science, 2014, 311: 709-714. [17]Gao Q S, Yan H, Qin Y, et al. Laser cladding Ti-Ni/TiN/TiW+TiS/WS2 self-lubricating wear resistant composite coating on Ti-6Al-4V alloy [J]. Optics & Laser Technology, 2019, 113: 182-191. [18]Rezai-Aria F, Remy L. An oxidation fatigue interaction damage model for thermal fatigue crack growth [J]. Engineering Fracture Mechanics, 1989, 34(2): 283-294. [19]Persson D H E, Coronel E, Jacobson S, et al. Surface analysis of laser cladded Stellite exposed to self-mated high load dry sliding [J]. Wear, 2005, 261(1): 96-100. [20]Cabrol E, Boher C, Vidal V, et al. A correlation between tribological behavior and crystal structure of cobalt-based hardfacings [J]. Wear, 2019, 426-427: 996-1007. [21]刘海浪, 卢儒学, 陈 健, 等.镍基合金电子束熔覆表面改性及高温耐磨性研究[J]. 金属热处理, 2021, 46(4): 161-166. Liu Hailang, Lu Ruxue, Chen Jian, et al. Electron beam cladding surface modification process and high temperature wear resistance of Ni-based alloy[J]. Heat Treatment of Metals, 2021, 46(4):161-166. [22]Alixe D, Siegfried F, Gaylord G. A combined friction energy and tribo-oxidation formulation to describe the high temperature fretting wear response of a cobalt-based alloy [J]. Wear, 2019, 426-427: 712-724. [23]Hou H D, An Y L, Zhao X Q, et al. Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1000 ℃[J]. Acta Materialia, 2015, 95: 164-175. [24]方慧敏, 张光胜, 夏莲森. 铁基粉末冶金材料渗硼强化的干滑动高温摩擦磨损行为[J]. 金属热处理, 2020, 45(1): 210-218. Fang Huimin, Zhang Guangsheng, Xia Liansen. High temperature dry sliding wear behavior of boriding strengthened Fe-based powder metallurgy material [J]. Heat Treatment of Metals, 2020, 45(1):210-218. |