[1]Feng X Y, Sun Y P, Wan S Y, et al. Effects ofaging process on the damping performance of ZK60 magnesium alloys prepared by large strain rolling[J]. Materials, 2020, 13(23): 5574-5583. [2]Duan L, Pan D, Wang H, et al. Investigation of the effect of alloying elements on damping capacity and magnetic domain structure of Fe-Cr-Al based vibration damping alloys[J]. Journal of Alloys and Compounds, 2016: 695: 1547-1554. [3]Mehraei G, Hickox A E, Bharadwaj H M, et al. Auditory brainstem response latency in noise as a marker of cochlear synaptopathy[J]. The Journal of Neuroscience, 2016, 36(13): 3755-3764. [4]Eriksson K, Burstrom L, Nilsson T. Blood biomarkers for vibration-induced white fingers. A case-comparison study[J]. American Journal of Industrial Medicine, 2020, 63(9): 779-786. [5]Huang W, Wang Y N, Peng H B, et al. Effect of up-quenching time on damping capacity in a ductile Cu-16.59Al-10.55Mn shape memory alloy[J]. Materials Research Express, 2019, 6(9): 095703. [6]Zalikanova I P. Use of damping alloys based on iron to reduce noise from impacts[J]. Metallurgist, 2008, 52(3-4): 205-206. [7]吴佳翼, 杨仕清, 唐明君, 等. Fe2CrAl和FeCrAlSi合金的磁性及阻尼性能的第一性原理研究[J]. 功能材料, 2016, 47(6): 6093-6097. Wu Jiayi, Yang Shiqing, Tang Mingjun, et al. First principles study of magnetism and damping properties of Fe2CrAl and FeCrAlSi alloys[J]. Journal of Functional Materials, 2016, 47(6): 6093-6097. [8]杨延丽, 高 鹏, 孙永庆, 等. 退火温度对Fe-Cr-Mo合金减振性能及力学性能的影响[J]. 金属热处理, 2019, 44(1): 130-134. Yang Yanli, Gao Peng, Sun Yongqing, et al. Effect of annealing temperature on damping capacity and mechanical properties of Fe-Cr-Mo alloy[J]. Heat Treatment of Metals, 2019, 44(1): 130-134. [9]高 鹏, 齐笑冰, 宋照伟, 等. 铁基阻尼合金的研究现状及展望[J]. 铸造, 2010, 59(11): 1190-1194. Gao Peng, Qi Xiaobing, Song Zhaowei, et al. Research status and prospect of Fe-based damping alloys[J]. Foundry, 2010, 59(11): 1190-1194. [10]Wang H, Wang F, Liu H T, et al. Influence of alloy elements (Mo, Nb, Ti) on the strength and damping capacity of Fe-Cr based alloy[J]. Materials Science and Engineering A, 2016, 667: 326-331. [11]LeeY K, Jun J H, Choi C S. Damping capacity in Fe-Mn binary alloys[J]. ISIJ International, 1997, 37(10): 1023-1030. [12]Huang S K, Huang W R, Liu J H, et al. Internal friction mechanism of Fe-19Mn alloy at low and high strain amplitude[J]. Materials Science and Engineering A, 2013, 560: 837-840. [13]Wang H J, Wang H, Zhang R Q, et al. Effect of high strain amplitude and pre-deformation on damping property of Fe-Mn alloy[J]. Journal of Alloys and Compounds, 2019, 770: 252-256. [14]宋国旸, 穆 龙. 阻尼合金的种类和特点[J]. 噪声与振动控制, 2010, 30(4): 97-99, 109. Song Guoyang, Mu Long. Summary of kinds and features of damping alloys[J]. Noise and Vibration Control, 2010, 30(4): 97-99, 109. [15]于学勇, 刘 立, 杨 莉, 等. 减振铸铁、铁锰系合金和铁铬铝系合金的阻尼机制研究[J]. 热加工工艺, 2016, 45(4): 79-80, 83. Yu Xueyong, Liu Li, Yang Li, et al. Research ondamping mechanism of damping cast, FeMn series alloys and FeCrAl series alloys[J]. Hot Working Technology, 2016, 45(4): 79-80, 83. [16]Park H, Kim S J, Lee J, et al. Characterization of the mechanical properties of a high-strength laminated vibration damping steel sheet and their application to formability prediction[J]. Metals and Materials International, 2019, 25(5): 1326-1340. [17]王树森, 赵 刚, 刘 璇, 等. 铁基阻尼合金的研究现状及发展趋势[J]. 鞍钢技术, 2016(3): 11-14. Wang Shusen, Zhao Gang, Liu Xuan, et al. Research status and development trend of Fe-based damping alloys[J]. Angang Technology, 2016(3): 11-14. [18]Hu X F, Du Y B, Yan D S, et al. Effect of Cu content on microstructure and properties of Fe-16Cr-2.5Mo damping alloy[J]. Journal of Materials Science and Technology, 2018, 34(5): 774-781. [19]黄 勇, 李 宁, 文玉华. 直流磁场对Fe-Cr-Mo合金阻尼性能的影响[J]. 热加工工艺, 2007(6): 21-23, 35. Huang Yong, Li Ning, Wen Yuhua. Effect of direct-current magnetic field on damping property of Fe-Cr-Mo alloy[J]. Hot Working Technology, 2007(6): 21-23, 35. [20]Yildirim M, Akdeniz M V, Mekhrabov A O. Effect of Mo addition on microstructure, ordering, and room-temperature mechanical properties of Fe-50Al[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 1970-1979. [21]Mohamed A K, Zadorozhnyy M Y, Saveliev D V, et al. Damping capacity, magnetic and mechanical properties of Fe-18Cr alloy[J]. Journal of Magnetism and Magnetic Materials, 2019, 494: 165777. [22]Chen K W, Yan J Z, Li N, et al. The effect of the annealing temperature on the damping capacity under constant prestress, mechanical properties and microstructure of an Fe-11Cr-2.5Mo-0.1Zr-1.0Ni forged damping alloy[J]. Journal of Alloys and Compounds, 2020, 815: 152429. [23]Hu X F, Song Y Y, Yan D S, et al. Aging characteristics and properties of Fe-16Cr-2.5Mo-1.0Cu damping alloy[J]. Materials Science and Engineering A, 2018, 734: 184-191. [24]Emdadi A, Nartey M A, Xu Y G, et al. Study of damping capacity of Fe-5.4Al-0.05Ti alloy[J]. Journal of Alloys and Compounds, 2015, 653: 460-467. [25]Xu Y G, Li N, Shen B L, et al. Effect of annealing treatment on damping capacity of Fe-7Al-0.5Ti alloy[J]. Materials Science and Engineering A, 2007, 447(1/2): 163-166. [26]李 宁, 黄 勇, 文玉华, 等. Si及时效对Fe-Al-Si阻尼合金性能的影响[J]. 材料科学与工艺, 2009, 17(2): 208-210, 214. Li Ning, Huang Yong, Wen Yuhua, et al. Effect of Si and ageing on properties of Fe-Al-Si damping alloys[J]. Materials Science and Technology, 2009, 17(2): 208-210, 214. [27]Choi S M, Park J S, An K, et al. Influence of gas nitriding on the damping capacity of Fe-17Mn alloy[J]. Metals and Materials International, 2019, 25(1): 135-139. [28]Xia B, Zhang X M, Misra R D K, et al. Significant impact of cold-rolling deformation and annealing on damping capacity of Fe-Mn-Cr alloy[J]. Journal of Iron and Steel Research International, 2020, 27(5): 556-576. [29]Li X, Chen L Q, Zhao Y. Controlled aging processes to improve damping capacity of Fe-19Mn alloy[J]. Materials Research Express, 2019, 6(6): 066579. [30]Sun H Y, Giron-Palomares B, Qu W H, et al. Effects of Cr addition and cold pre-deformation on the mechanical properties, damping capacity, and corrosion behavior of Fe-17%Mn alloys[J]. Journal of Alloys and Compounds, 2019, 803: 250-259. [31]施瑞鹤, 沈嘉猷, 华瑞起, 等. 铸铁阻尼性能的研究[J]. 铸造, 1987(11): 9-13. Shi Ruihe, Shen Jiayou, Hua Ruiqi, et al. Research on the damping property of cast iron[J]. Foundry, 1987(11): 9-13. [32]Ibrahim M M, Mourad M M, Nofal A A, et al. Microstructure, hot oxidation resistance and damping capacity of Al-alloyed cast iron[J]. International Journal of Cast Metals Research, 2017, 30(2): 61-69. [33]宋宝安, 郝志勇. 减振钢板在内燃机降噪中的应用[J]. 汽车技术, 2004(8): 5-8. Song Baoan, Hao Zhiyong. Application ofvibration-damping steel plate in reducing internal combustion engine noise[J]. Automobile Technology, 2004(8): 5-8. [34]刘效东, 吴宝榕. 马氏体相对Fe-Cr-Al合金阻尼本领和力学性能的影响[J]. 钢铁, 1993(3): 53-57. Liu Xiaodong, Wu Baorong. Influence of martensite on damping capacity and mechanical properties in Fe-Cr-Al alloy[J]. Iron and Steel, 1993(3): 53-57. [35]Yan S H, Li N, Wang J, et al. Effect of minor Zr element on microstructure and properties of Fe-16Cr-2.5Mo damping alloys[J]. Journal of Alloys and Compounds, 2018, 740: 587-594. [36]杨延丽, 高 鹏, 孙永庆, 等. Mn、Si合金化和退火温度对Fe-Cr-Mo减振合金性能的影响[J]. 金属热处理, 2019, 44(6): 55-60. Yang Yanli, Gao Peng, Sun Yongqing, et al. Effects of Mn and Si alloying and annealing temperature on properties of Fe-Cr-Mo damping alloy[J]. Heat Treatment of Metals, 2019, 44(6): 55-60. [37]Chen Q, Zhang H L, Zhou S Q, et al. A novel high-entropy alloy with excellent damping property toward a large strain amplitude environment[J]. Journal of Alloys and Compounds, 2019, 802: 493-501. [38]Yasuda H Y, Fukushima K, Kouzai K, et al. Effect of Ni doping on strength and damping capacity of Fe-Al alloys[J]. ISIJ International, 2013, 53(4): 704-708. [39]葛 昕, 李 健, 王世宏. Mn含量对Fe-Mn合金微观组织和性能的影响[J]. 金属功能材料, 2020, 27(1): 24-29. Ge Xin, Li Jian, Wang Shihong. Influence of Mn content on microstructure and capacity in Fe-Mn alloys[J]. Metallic Functional Materials, 2020, 27(1): 24-29. [40]吴冰洁, 张宏亮, 王庆田, 等. Nb元素的添加对Fe-Mn合金时效过程中阻尼性能的影响[J]. 热加工工艺, 2020, 49(6): 142-145, 149. Wu Bingjie, Zhang Hongliang, Wang Qingtian, et al. Effect of Nb addition on damping properties of Fe-Mn alloy during aging[J]. Hot Working Technology, 2020, 49(6): 142-145, 149. [41]Zhang Y, Guo E J, Wang L P, et al. Effect of the matrix structure on vermicular graphite cast iron properties[J]. International Journal of Materials Research (formerly Ztschrift fuer Metallkunde), 2020, 111(5): 379-384. |