[1]Liu Bin, Wang Bo, Yang Xudong, et al. Thermal fatigue evaluation of AISI H13 steels surface modified by gas nitriding with pre- and post-shot peening[J]. Applied Surface Science, 2019, 483: 45-51. [2]Zhang Cheng, Li Pu, Wei Shizhong, et al. Effect of tempering temperature on impact wear behavior of 30Cr3Mo2WNi hot-working die steel[J]. Frontiers in Materials, 2019, 6: 149. [3]Jiang Qichuan, Zhao Xumin, Qiu Feng, et al. The relationship between oxidation and thermal fatigue of martensitic hot-work die steels[J]. Acta Metallurgica Sinica, 2018, 31(7): 692-698. [4]Cong Dalong, Zhou Hong, Ren Zhenan, et al. Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process[J]. Optics and Lasers in Engineering, 2014, 54: 55-61. [5]Ryuichiro Ebara. Fatigue crack initiation and propagation behavior of forging die steels[J]. International Journal of Fatigue, 2009, 32(5): 830-840. [6]Jiang Q C, Sui H L, Guan Q F. Thermal fatigue behavior of new type high-Cr cast hot work die steel[J]. ISIJ International, 2007, 44(6): 1103-1107. [7]潘晓华, 朱祖昌. H13热作模具钢的化学成分及其改进和发展的研究[J]. 模具制造, 2006, 6(4): 78-85. Pan Xiaohua, Zhu Zuchang. The study of the chemical composition and improvement and development for the H13 hot work die and mold steel[J]. Die and Mould Manufacture, 2006, 6(4): 78-85. [8]Xia P C, Han G P, Xie K, et al. Heat treatment process of a newly developed hot work tool steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(1): 109-114. [9]金 欣, 周 健, 迟宏宵, 等. 钨对热锻模具钢一次碳化物形貌及冲击性能的影响[J]. 金属热处理, 2018, 43(3): 35-39. Jin Xin, Zhou Jian, Chi Hongxiao, et al. Effect of tungsten content on eutectic carbides morphology and impact property of hot-working die steels[J]. Heat Treatment of Metals, 2018, 43(3): 35-39. [10]朱春燕, 石楠楠, 左鹏鹏, 等. Mn和W元素对4Cr2Mo2W2V模具钢热稳定性的影响[J]. 材料热处理学报, 2014, 35(S2): 66-69. Zhu Chunyan, Shi Nannan, Zuo Pengpeng, et al. Effect of Mn and W on thermal stability of 4Cr2Mo2W2V die steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(S2): 66-69. [11]吴晓春, 左鹏鹏. 国内外热作模具钢发展现状与趋势[J]. 模具工业, 2013, 39(10): 1-9. Wu Xiaochun, Zuo Pengpeng. Development status and trend of hot working die steels at home and abroad[J]. Die and Mould Industry, 2013, 39(10): 1-9. [12]吴晓春, 施渊吉. 热锻模材料的发展现状与趋势[J]. 模具工业, 2015, 41(8): 1-10. Wu Xiaochun, Shi Yuanji. Development status and trend of hot forging die materials[J]. Die and Mould Industry, 2015, 41(8): 1-10. [13]田子启, 曹建春, 周晓龙, 等. 回火温度和Mo对Ti微合金化钢组织和性能的影响[J]. 材料热处理学报, 2016, 37(6): 156-162. Tian Ziqi, Cao Jianchun, Zhou Xiaolong, et al. Effect of tempering and Mo on microstructure and properties of Ti microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(6): 156-162. [14]王香彬, 韦 弦, 孙 斌, 等. 含Mo低碳贝氏体钢形变奥氏体连续冷却相变规律研究[J]. 河南冶金, 2011, 19(2): 16-18. Wang Xiangbing, Wei Xuan, Sun Bing, et al. Study on continuous cooling transformation behavior for deformed austenite in the Mo-bearing low-carbon bainite steel[J]. Henan Metallurgy, 2011, 19(2): 16-18. [15]李成良, 黄远坚, 温志红, 等. 合金元素Mo和V对模具钢组织性能的影响[J]. 金属材料与冶金工程, 2017, 45(S1): 5-10. Li Chengliang, Huang Yuanjian, Wen Zhihong, et al. Effect of Mo and V on the microstructure and property of mould steel[J]. Metal Materials and Metallurgy Engineering, 2017, 45(S1): 5-10. [16]Moor E D, Matlock D K, Speer J G, et al. Austenite stabilization through manganese enrichment[J]. Scripta Materialia, 2011, 64(2): 185-188. [17]Chen Ying, Chen Zaizhi, Dong Han, et al. Advance in research of tempering secondary hardening of alloy tool and die steel Fe-M-C quenched martensite[J]. Special Steel, 2004(2): 35-38. [18]Sandberg O, Klarenfjord B, Miller P. Properties profile: Comparison of premium quality H13 & modified hot work die steel[J]. Die Casting Engineer, 2002, 46(3): 40-49. [19]金 欣, 周 健, 迟宏宵, 等. Mo-W-Co系高热强性热锻模具钢的组织与性能[J]. 金属热处理, 2018, 43(2): 8-15. Jin Xin, Zhou Jian, Chi Hongxiao, et al. Microstructure and mechanical properties of Mo-W-Co high hot-strength hot-work die steels[J]. Heat Treatment of Metals, 2018, 43(2): 8-15. [20]DIEVAR/8418钢[Z]. 热处理技术与装备, 2018, 39(3): 57. [21]陈英伟, 吴晓春. 几种典型热作模具钢性能的对比[J]. 机械工程材料, 2010, 34(2): 27-29, 34. Cheng Yingwei, Wu Xiaochun. Comparison of properties for several typical hot work die steels[J]. Materials for Mechanical Engineering, 2010, 34(2): 27-29, 34. [22]Zhou J, Ma D S, Chi H X, et al. Microstructure and properties of hot working die steel H13MOD[J]. Journal of Iron and Steel Research International, 2013, 20(9): 117-125. [23]Inoue A, Masumoto T. Carbide reactions(M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels[J]. Metallurgical Transactions A, 1980, 11(5): 739-747. [24]Liu Tianlong, Chen Lijia, Bi Hongyun, et al. Effect of Mo on high-temperature fatigue behavior of 15CrNbTi ferritic stainless steel[J]. Acta Metallurgica Sinica, 2014, 27(3): 452-456. [25]崔忠析, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007: 312-313. [26]Hu X, Li L, Wu X. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J]. International Journal of Fatigue, 2006, 28(3): 175-182. [27]符仁钰, 刘以宽. 铸造H13钢的回火转变及碳化物的研究[J]. 材料热处理学报, 1992, 13(3): 28-32. Fu Renyu, Liu Yikuan. Study on tempering transformation and carbide of cast H13 steel[J]. Transactions of Materials and Heat Treatment, 1992, 13(3): 28-32. [28]陈英伟, 吴晓春, 宋雯雯, 等. 含铌热作模具钢中碳化物的演变对热稳定性的影响[J]. 材料热处理学报, 2010, 31(5): 75-80. Chen Yingwei, Wu Xiaochun, Song Wenwen, et al. Effect of carbides evolution on thermal-stability in Nb-microalloyed hot work steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(5): 75-80. [29]Horn R M, Ritchie R O. Mechanisms of tempered martensite embrittlement in low alloy steels[J]. Metallurgical Transactions A, 1978, 9: 1039-1053. [30]Michaud P, Delagnes D, Lamesle P, et al. The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels[J]. Acta Materialia, 2007, 55(14): 4877-4889. |