[1]郭 蓓, 薛建国, 牛 瑞, 等. 干式螺杆真空泵研究现状与展望[J]. 真空, 2009, 46(5): 37-40. Guo Bei, Xue Jianguo, Niu Rui, et al. Current situation and outlook for R&D of dry screw vacuum pumps[J]. Vacuum, 2009, 46(5): 37-40. [2]刘 坤, 巴德纯, 杨乃恒, 等. 国外高真空直排大气干泵的发展现状[C]//沈阳: 第八届真空冶金与表面工程学术会议论文集, 2007: 318-322. [3]房贵如, 王云昭. 现代球墨铸铁的诞生、应用及技术发展趋势—20世纪材料科学最重大的技术进展之一[J]. 现代铸铁, 2000(1): 3-10. Fang Guiru, Wang Yunzhao. The birth, application, tendency of technologh development-The one of the most important technology progresses of the material science of the 20th century[J]. Modern Cast Iron, 2000(1): 3-10. [4]马敬仲, 曾艺成. 厚大断面球墨铸铁件生产中若干问题的探讨(1)[J]. 现代铸铁, 2020(1): 1-4. Ma Jingzhong, Zeng Yicheng. A discussion on some problems in heavy section nodular iron production (I)[J]. Modern Cast Iron, 2020(1): 1-4. [5]雷廷权. 2010年中国的热处理[J]. 金属热处理, 1999, 24(12): 1-4. Lei Tingquan. 2010' Heat Treatment in China[J]. Heat Treatment of Metals, 1999, 24(12):1-4. [6]颜礼功, 李 增, 周晓玲, 等. 低碳球墨铸铁等温转变后的组织和性能[J]. 金属热处理, 2005, 30(6): 85-87. Yan Ligong, Li Zeng, Zhou Xiaoling, et al. Microstructure and properties of low carbon nodular cast iron after austempering[J]. Heat Treatment of Metals, 2005, 30(6): 85-87. [7]杨万虎, 周文军, 张守全, 等. QT500-14, QT600-10高硅球墨铸铁研究[J]. 铸造, 2014, 63(8): 831-835. Yang Wanhu, Zhou Wenjun, Zhang Shouquan, et al. Investigation on high Si ductile iron of QT500-14 and QT600-10[J]. Foundry, 2014, 63(8): 831-835. [8]侯晓霞, 张维友, 赵 岩. 热处理冷却方式对铁素体基体球墨铸铁组织与性能的影响[J]. 铸造技术, 2018, 39(9): 2078-2081. Hou Xiaoxia, Zhang Weiyou, Zhao Yan. Effect of heat treatment cooling on microstructure and property of ductile iron with ferritic matrix[J]. Foundry Technology, 2018, 39(9): 2078-2081. [9]林兆琴, 陈季明. 热处理过程中球墨铸铁的组织及石墨碳变化行为的研究[J]. 包钢科技, 1988(4): 49-55. [10]杨海峰, 周威佳, 赵洪运, 等. 一种球墨铸铁等温正火工艺[J]. 金属热处理, 2015, 40(7): 142-144. Yang Haifeng, Zhou Weijia, Zhao Hongyun, et al. Isothermal normalizing process for a ductile iron[J]. Heat Treatment of Metals, 2015, 40(7): 142-144. [11]叶曙龙, 刘宪民, 焦守民, 等. 球墨铸铁QT450-10、QT500-7的退火工艺优化与组织分析[J]. 热处理技术与装备, 2011, 32(1): 5-8. Ye Shulong, Liu Xianmin, Jiao Shoumin, et al. The annealing process optimization and microstructure analysis of spheroidal graphite cast iron QT450-10 and QT500-7[J]. Heat Treatment Technology and Equipment, 2011, 32(1): 5-8. [12]高军芳. 球墨铸铁真空泵转子热处理工艺研究[J]. 热加工工艺, 2013, 44(22): 192-195. Gao Junfang. Research on heat treatment process of nodular cast iron vacuum pump rotor[J]. Hot Working Technology, 2013, 44(22): 192-195. [13]李青春, 林大帅, 杨晓平. 球墨铸铁加热过程中渗碳体石墨化的原位观察[J]. 材料热处理学报, 2011, 32(10): 80-84. Li Qingchun, Lin Dashuai, Yang Xiaoping. In situ observation of graphitization of cementite in ductile cast iron during heating[J]. Transactions of Materials and Heat Treatment, 2011, 32(10): 80-84. [14]Gao M Q, Qu Y D, Li G L, et al. Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment[J]. Journal of Iron and Steel Research International, 2017, 24(8): 838-843. [15]Lekakh S N, Richards V L. Diffusion modeling and experimental verification of pearlite/ferrite formation in ductile iron[J]. Transactions of American Foundry Society 2010, 118: 225-232 [16]Neri M A, R Colás, Valtierra S. Graphitization in high carbon commercial steels[J]. Journal of Materials Engineering and Performance, 1998, 7(4): 467-473. [17]王振国. 铸铁中渗碳体石墨化相变机理及工艺[D]. 内蒙古: 内蒙古科技大学, 2002. [18]叶大伦. 实用无机物热力学数据手册[M]. 北京: 冶金工业出版社, 1981. |