[1]赵茂密, 秦颐鸣, 零妙然, 等. 大型挤压在线淬火装备的现状和改进方案研究[J]. 铝加工, 2019(3): 51-54, 57. Zhao Maomi, Qin Yiming, Ling Miaoran, et al. Current situation and improvement scheme of large online quenching equipment[J]. Aluminum Fabrication, 2019(3): 51-54, 57. [2]Wang B X, Guo X T, Xie Q, et al. Heat transfer characteristic research during jet impinging on top/bottom hot steel plate[J]. International Journal of Heat and Mass Transfer, 2016, 101(10): 844-851. [3]Jha J M, Ravikumar S V, Haldar K, et al. Heat transfer from a hot moving steel plate by air-atomized spray impingement[J]. Experimental Heat Transfer, 2016, 29(1): 78-96. [4]Mozumder A K, Monde M, Woodfield P L, et al. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2877-2888. [5]Chen R H, Chow L C, Navedo J E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 4033-4043. [6]Langari M, Yang Z, Dunne J F, et al. Multi-phase CFD-conjugate heat transfer for spray cooling in the non-boiling regime[J]. The Journal of Computational Multiphase Flows, 2018, 10(1): 33-42. [7]Li Y Y, Liu Z H, Wang Q. Experimental study on critical heat flux of steady boiling for high-velocity slot jet impinging on the stagnation zone[J]. International Journal of Heat and Mass Transfer, 2014, 70(3): 1-9. [8]Gao J N, Gao Y, Xu Q R, et al. Simulation on flow, heat transfer and stress characteristics of large-diameter thick-walled gas cylinders in quenching process under different water spray volumes[J]. Journal of Central South University, 2019, 26(11): 3188-3199. [9]Jeyajothi K, Kalaichelvi P. Augmentation of heat transfer and investigation of fluid flow characteristics of an impinging air jet on to a flat plate[J]. Arabian Journal for Science and Engineering, 2019, 44(6): 5289-5299. [10]Fu P, Zhou P, Zhao T Y, et al. Study of the heat transfer coefficient of a nickel-based superalloy in the end-quench test with air[J]. International Journal of Thermal Sciences, 2020, 155: 106416. [11]徐 戎, 李落星, 王震虎. 铝合金喷雾淬火界面传热系数的反分析求解[J]. 金属热处理, 2018, 43(10): 232-236. Xu Rong, Li Luoxing, Wang Zhenhu. Determination of interfacial heat transfer coefficient of aluminum alloy during spray quenching based on inverse analysis method[J]. Heat Treatment of Metals, 2018, 43(10): 232-236. [12]徐 戎, 李落星, 王震虎. 基于反热传导法的铝合金喷水冷却界面换热系数求解[J]. 金属热处理, 2018, 43(11): 202-207. Xu Rong, Li Luoxing, Wang Zhenhu. Calculation of interfacial heat transfer coefficient of aluminum alloy spraying cooled based on inverse heat conduction method[J]. Heat Treatment of Metals, 2018, 43(11): 202-207. [13]Zhang L Q, Li L X. Determination of heat transfer coefficients at metal/chill interface in the casting solidification process[J]. Heat and Mass Transfer, 2013, 49(8): 1071-1080. [14]刘露露. 6×××系铝合金在线淬火TTP曲线的研究[D]. 长沙: 中南大学, 2012: 41-44. |