[1]Brinksmeier E, Brockhoff T. Utilization of grinding heat as a new heat treatment process[J]. CIRP Annals-Manufacturing Technology, 1996, 45(1): 283-286. [2]Brinksmeier E, Brockhoff T. Randschicht-wärm ebehandlung durch schleifen[J]. HTM Journol of Heat Treatment and Materials, 1994, 49(5): 327-330. [3]Brockhoff T, Brinksmeier E. Grind-hardening: A comprehensive view[J]. CIRP Annals-Manufacturing Technology, 1999, 48(1): 255-260. [4]Zarudi I, Zhang L C. Modelling the structure changes in quenchable steel subjected to grinding[J]. Journal of Materials Science, 2002, 37(20): 4333-4341. [5]Zarudi I, Zhang L C. Mechanical property improvement of quenchable steel by grinding[J]. Journal of Materials Science, 2002, 37(18): 3935-3943. [6]刘菊东, 王贵成, 陈康敏, 等. 原始组织对40Cr钢磨削硬化层的影响研究[J]. 金属热处理, 2004, 29(12): 61-65. Liu Judong, Wang Guicheng, Chen Kangmin, et al. Effect of original structure on the grind-hardened layer of 40Cr steel[J]. Heat Treatment of Metals, 2004, 29(12): 61-65. [7]刘菊东, 王贵成, 陈康敏. 磨削用量对40Cr钢磨削淬硬层的影响[J]. 中国机械工程, 2006(17): 1842-1845. Liu Judong, Wang Guicheng, Chen Kangmin. Effect of grinding parameters on the grind-hardening layer of steel 40Cr[J]. China Mechanical Engineering, 2006(17): 1842-1845. [8]刘菊东, 王贵成, 陈康敏, 等. 砂轮特性对40Cr钢磨削淬硬层的影响[J]. 金属热处理, 2006, 31(12): 56-58. Liu Judong, Wang Guicheng, Chen Kangmin, et al. Effect of grinding wheel character on the grind-hardening layer of steel 40Cr[J]. Heat Treatment of Metals, 2006, 31(12): 56-58. [9]刘菊东, 王贵成, 陈康敏, 等. 40Cr钢外圆磨削表面淬硬层的组织[J]. 金属热处理, 2007, 32(2): 53-56. Liu Judong, Wang Guicheng, Chen Kangmin, et al. Microstructures of surface hardened layer in cylindrical grinding 40Cr[J]. Heat Treatment of Metals, 2007, 32(2): 53-56. [10]Xiu Shichao, Shi Xiaoliang. Transformation mechanism of microstructure and residual stress within hardening layer in PSHG[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2015, 9(3): JAMDSM0038. [11]Zhang Y, Ge P Q, Be W B. The study for variable grinding depth to control plane grind-hardening layer depth distribution[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8): 1269-1276. [12]Liu M, Zhang K, Xiu S. Mechanism investigation of hardening layer hardness uniformity based on grind-hardening process[J]. International Journal of Advanced Manufacturing Technology, 2016, 88(9-12): 1-10. [13]Guo Y, Xiu S C, Liu M H, et al. Uniformity mechanism investigation of hardness penetration depth during grind-hardening process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(5-8): 2001-2010. [14]Kolkwitz B, Kohls E, Heinzel C, et al. Correlations between thermal loads during grind-hardening and material modifications using the concept of process signatures[J]. Journal of Manufacturing and Materials Processing, 2018, 2(1): 20. [15]Huang X, Ren Y, Wu W, et al. Research on grind-hardening layer and residual stresses based on variable grinding forces[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(1): 1045-1055. [16]高顺兴, 刘菊东, 黄松伟. 40Cr钢双道搭接磨削淬硬回火软化特征[J]. 材料热处理学报, 2020, 41(6): 174-182. Gao Shunxing, Liu Judong, Huang Songwei. Tempering softening characteristics of overlapping zones in double-passes grind-hardening process of 40Cr steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(6): 174-182. [17]任敬心, 华定安. 磨削原理[M]. 西安: 西北工业大学出版社, 1988. [18]李炯辉, 胡明初. 球墨铸铁显微研究[M]. 北京: 科学技术出版社, 1978. [19]中国机械工程学会热处理学会, 《热处理手册》编委会编. 热处理手册-热处理质量控制和检验[M]. 3版. 北京: 机械工业出版社, 2002. |