[1]向长淑, 葛 渊, 张晗亮, 等. 耐超高温铱合金强韧化技术研究进展[J]. 材料导报, 2009, 23(13): 7-10. Xiang Changshu, Ge Yuan, Zhang Hanliang, et al. Research progress in strengthening and toughening technology of iridium alloys for ultra-high temperature application[J]. Materials Review, 2009, 23(13): 7-10. [2]Liu Haitao, Shao Dan, Li Baoqiang. Theory analysis of thermocouple temperature measurement[J]. Applied Mechanics and Materials, 2012, 239-240: 749-753. [3]黄泽铣. 铱基合金高温热电偶材料[J]. 功能材料, 1973(S1): 30-49. [4]Murakami R, Kamada K, Shoji Y, et al. Fabrication of flexible Ir and Ir-Rh wires and application for thermocouple[J]. Journal of Crystal Growth, 2018, 487: 72-77. [5]Yamabe-Mitarai Y, Ro Y, Harada H, et al. Ir-base refractory superalloys for ultra-high temperatures[J]. Metallurgical and Materials Transactions A, 1998, 29(2): 537-549. [6]谢佑卿, 杨昕昕, 彭 坤. 贵金属铑和铱的电子结构和物理性质[J]. 贵金属, 2001, 22(4): 7-12. Xie Youqing, Yang Xinxin, Peng Kun. Electronic structures and physical properties of rhodium and iridium[J]. Precious Metals, 2001, 22(4): 7-12. [7]Panfilov P, Yermakov A. On brittle fracture in polycrystalline iridium[J]. Journal of Materials Science, 2004, 39(14): 4543-4552. [8]Yu Xihong, Yamabe-Mitarai Y, Nakazawa S, et al. Drastically improved ductility of an Ir-base alloy by mixing Ir-Nb with Ni-Al[J]. Materials Science and Engineering A, 2002, 329(1): 481-485. [9]Heatherly L, George E P. Grain-boundary segregation of impurities in iridium and effects on mechanical properties[J]. Acta Materialia, 2001, 49(2): 289-298. [10]Choi H J, Kim N S, Jung T K, et al. Effect of iridium and rhodium on high-temperature volatilization behavior of platinum alloys[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7756-7759. [11]刘 毅, 陈登权, 陈家林, 等. Ir和IrRh40合金热电偶丝的显微组织和力学性能研究[J]. 贵金属, 2014, 35(3): 40-44. Liu Yi, Chen Dengquan, Chen Jialin, et al. Investigation on microstructure and properties of Ir and IrRh40 alloy thermocouple wire[J]. Precious Metals, 2014, 35(3): 40-44. [12]卢邦洪. 铱铑-铱热电偶的高温分度[J]. 贵金属, 1980(1): 20-26. [13]王兰馨, 温 斌, 姚 山. 第一性原理计算压力对高熵合金AlCoCrCuFeNi的影响[J]. 稀有金属材料与工程, 2015, 44(7): 1674-1678. Wang Lanxin, Wen Bin, Yao Shan. First-principle studies of AlCoCrCuFeNi high entropy alloys with the pressure-inducing[J]. Rare Metal Materials and Engineering, 2015, 44(7): 1674-1678. [14]Masin M, Bergqvist L, Kudrnovsky J, et al. First-principles study of thermodynamical properties of random magnetic overlayers on fcc-Cu(001) substrate[J]. Physical Review B, 2013, 87(7): 075452. [15]Winiarski M J, Polak M, Scharoch P. Anomalous band-gap bowing of AlN1-xPx alloy[J]. Journal of Alloys and Compounds, 2013, 575: 151-161. [16]Trinastic J, Wang Y, Cheng H P. First-principles study of Co concentration and interfacial resonance states in Fe1-xCox magnetic tunnel junctions[J]. Physical Review B, 2013, 88(10): 104408. [17]Gueddouh A, Benghia A, Maabed S. Effect of Mn content in Fe(1-x)MnxB(x=0, 0.25, 0.5, 0.75 and 1) on physical properties-ab initio calculations[J]. Materials Science-Poland, 2019, 37(1): 71-82. [18]Benhamida M, Baadji N, Bouamama K H. Computational study of mechanical and electronic properties of transition metal carbides TixM1-xC with M=Nb, V and Zr[J]. Journal of Nanoelectronics and Optoelectronics, 2019, 14(5): 622-625. [19]Zhang X, Liu J, Liu Y, et al. Structural, electronic, dynamic and thermodynamic properties of Zr(1-x)HfxH2 hydride alloys: A first-principles study based on the virtual crystal approximation[J]. Physica B: Condensed Matter, 2018, 550: 217-224. [20]Winkler B, Pickard C, Milman V. Applicability of a quantum mechanical virtual crystal approximation to study Al/Si-disorder[J]. Chemical Physics Letters, 2002, 362(3-4): 266-270. [21]Andersen O K. Electronic structure of the fcc transition metals Ir, Rh, Pt, and Pd[J]. Physical Review B, 1970, 2(4): 883-906. [22]Setyawan W, Curtarolo S. High-throughput electronic band structure calculations: challenges and tools[J]. Computational Materials Science, 2010, 49(2): 299-312. [23]Riley J A. A simple method for welding thermocouples[J]. Science, 1949, 109(2829): 281-28. |