[1]Tian Q, Yin F, Sakaguchi T, et al. Reverse transformation behavior of a prestrained MnCu alloy[J]. Acta Materialia, 2006, 54(7): 1805-1813. [2]Bacon G E, Dunmur I W, Smith J H, et al. The antiferromagnetism of manganese copper alloys[J]. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 1957, 241: 223-238. [3]Markova G V. Internal friction during martensitic transformation in high manganese Mn-Cu alloys[J]. Materials Science and Engineering A, 2004, 370(1/2): 473-476. [4]Cui S S, Shi S, Zhao Z M, et al. Tunable elastic modulus in Mn-based antiferromagnetic shape memory alloys[J]. Materials Research Express, 2016, 3(7): 075701. [5]彭文屹, 邓华铭, 张骥华. Mn-Ni合金的反铁磁转变与马氏体相变[J]. 金属学报, 2003(11): 1153-1156. Peng Wenyi, Deng Huaming, Zhang Jihua. Antiferromagnetic transition and martensite transformation in Mn-Ni alloys[J]. Acta Metallurgica Sinica, 2003(11): 1153-1156. [6]Bidaux J E, Schaller R, Benoit W. Study of the hcp-fcc phase transition in cobalt by acoustic measurements[J]. Acta Metallurgica, 1989, 37(3): 803-811. [7]Belko V N, Darinsky B M, Postnikov V S, et al. Internal friction during diffusionless phase transformations in Co-Ni alloys[J]. Physics of Metals and Metallography, 1969, 27(1): 140-146. [8]Zhang J X, Fung P C W, Zeng W G. Dissipation function of the first-order phase transformation in solids via internal-friction measurements[J]. Physical Review B, 1995, 52(1): 268. [9]Hou S, Qin F, Han J, et al. Strain glass transition in high damping Mn-22Cu-5Ni-2Fe alloy[J]. Progress in Natural Science: Materials International, 2018, 28(5): 614-617. [10]Jiang Z C, Zhang S B, Tian Q C, et al. Phenomenological representation of mechanical spectroscopy of high damping MnCuNiFe alloy[J]. Materials Science and Technology, 2020, 36(6): 743-749. [11]王力田, 葛庭燧. MnCu合金马氏体相变和马氏体的内耗[J]. 金属学报, 1988, 24(3): 147-154. Wang Litian, Ge Tingsui. Internal friction in martensite and martensitic transformation in MnCu alloys[J]. Acta Metallurgica Sinica, 1988, 24(3): 147-154. [12]Venkateswararao P, Chatterjee D K. Structural studies on the alloying behaviour of γ-Mn and the development of a high damping capacity in Mn-Cu alloys[J]. Journal of Materials Science, 1980, 15(1): 139-148. [13]Sugimoto K, Mori T, Shiode S. Effect of composition on the internal friction and Young's modulus in γ phase Mn-Cu alloys[J]. Metal Science Journal, 1973, 7(1): 103-108. [14]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2009: 144-153. [15]郝士明. 材料热力学[M]. 北京: 化学工业出版社, 2003: 48-55. [16]Thibon I, Guillou A, Gloriant T. Interdiffusion in the fcc phase of Cu-Mn binary alloys[J]. Journal of Phase Equilibria and Diffusion, 2012, 33(4): 303-309. [17]张金金. γ-MnFe基合金双程形状记忆效应和磁诱发应变机制探索[D]. 上海: 上海交通大学, 2007: 9-13. [18]Lu F S, Wu B, Zhang J F, et al. Microstructure and damping properties of MnCuNiFeCe alloy[J]. Rare Metals, 2016, 35(8): 615-619. [19]Tian Q, Yin F, Sakaguchi T, et al. Internal friction behavior of the reverse martensitic transformation in deformed MnCu alloy[J]. Materials Science and Engineering A, 2006, 438: 374-378. [20]刘军民, 张进修. 共析转变过程中内耗与复模量行为的对比[J]. 金属学报, 1996(8): 758-790. Liu Junmin, Zhang Jinxiu. Behaviour of complex elastic modulus and internal friction during eutectoid decomposition[J]. Acta Metallurgica Sinica, 1996(8): 758-790. [21]刘军民. MnCu合金热弹性马氏体相变过程中的非线性内耗行为[J]. 物理学报, 1997(12): 2408-2417. Liu Junmin. Nonlinear internal friction behavior in MnCu alloy during thermoelastic martensitic transition[J]. Acta Physica Sinica, 1997(12): 2408-2417. |