[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration[J]. Material and Design, 2018, 143: 49-55. [3]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153-1158. [4]Reddy S R, Bapari S, Bhattacharjee P P, et al. Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy[J]. Material Research Letters, 2017, 5(6): 408-414. [5]Yao Y G, Huang Z N, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359: 1489-1494. [6]Lin C M, Hsien L T. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy[J]. Intermetallics, 2011, 19(3): 288-294. [7]Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Materialia, 2011, 59(16): 6308-6317. [8]Allain S, Chateau J P, Dahmoun D, et al. Modeling of mechanical twinning in a high manganese content austenitic steel[J]. Materials Science and Engineering A, 2004, 387: 272-276. [9]Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanism in Fe-Mn-C alloys[J]. Material Science and Engineering A, 2004, 387: 158-162. [10]Liu S F, Wu Y, Wang H T, et al. Stacking fault energy of face-centered-cubic high entropy alloys[J]. Intermetallics, 2018, 93: 269-273. [11]Liu S F, Wu Y, Wang H T, et al. Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking faultenergy[J]. Journal of Alloys and Compounds, 2019, 792: 444-455. [12]Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534: 227-230. [13]Saeed A A, Imlau J, Bleck U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels[J]. Metallurgical and Materials Transactions A, 2009, 40(13): 3076-3090. [14]He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014, 62: 105-113. [15]Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012, 26: 44-51. [16]Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→ HCP transformation[J]. Metallurgical Transactions A, 1976, 7(12): 1897-1904. [17]Zhang F, Wu Y, Lou H B, et al. Polymorphism in a high-entropy alloy[J]. Nature Communications, 2017, 8: 15687. [18]Ma D C, Grabowski B, Körmann F, et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one[J]. Acta Materialia, 2015, 100: 90-97. [19]Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical Transactions A, 1975, 6(4): 791-795. [20]Olson G B, Cohen M. A perspective on martensitic nucleation[J]. Annual Review of Materials Science, 1981, 11(1): 1-32. [21]陈陈旭. 高熵合金微观变形机理[D]. 杭州: 浙江大学, 2018. [22]Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation[J]. Acta Materialia, 2015, 96: 258-268. [23]Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy[J]. Intermetallics, 2015, 59: 8-17. [24]曲绍兴, 周昊飞. 纳米孪晶界对金属材料强韧性影响的原子尺度研究[C]// 中国计算力学大会2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集. 中国力学学会, 2010: 1. |