[1]王 鑫, 潘希德, 牛 强, 等. AZ33M镁合金激光熔覆Al-Si涂层的组织与性能[J]. 金属热处理, 2021, 46(5): 202-206. Wang Xin, Pan Xide, Niu Qiang, et al. Microstructure and properties of laser clad Al-Si coating on AZ33M magnesium alloy[J]. Heat Treatment of Metals, 2021, 46(5): 202-206. [2]何建群, 吴成武, 王靖雯, 等. 12CrNi3A钢凸轮轴的激光熔覆再制造技术[J]. 金属热处理, 2021, 46(2): 200-203. He Jianqun, Wu Chengwu, Wang Jingwen, et al. Laser cladding remanufacturing technology of 12CrNi3A steel camshaft[J]. Heat Treatment of Metals, 2021, 46(2): 200-203. [3]王贤才, 张亚普, 柴蓉霞. 27SiMn钢表面激光熔覆304不锈钢的组织和性能[J]. 金属热处理, 2020, 45(4): 188-193. Wang Xiancai, Zhang Yapu, Chai Rongxia. Microstructure and properties of 304 stainless steel laser cladding on 27SiMn steel surface[J]. Heat Treatment of Metals, 2020, 45(4): 188-193. [4]Chai Q, Fang C, Hu J, et al. Cellular automaton model for the simulation of laser cladding profile of metal alloys[J]. Materials & Design, 2020, 195: 109033. [5]Meng G, Zhu L, Zhang J, et al. Statistical analysis and multi-objective process optimization of laser cladding TiC-Inconel718 composite coating[J]. Optik, 2021, 240: 166828. [6]Zhu H, Ouyang M, Hu J, et al. Design and development of TiC-reinforced 410 martensitic stainless steel coatings fabricated by laser cladding[J]. Ceramics International, 2021, 47(9): 12505-12513. [7]Meng L, Zhu B, Xian C, et al. Comparison on the wear properties and rolling contact fatigue damage behaviors of rails by laser cladding and laser-induction hybrid cladding[J]. Wear, 2020, 458-459: 203421. [8]Li X, Li T, Shi B, et al. The influence of substrate tilt angle on the morphology of laser cladding layer[J]. Surface and Coatings Technology, 2020, 391: 125706. [9]Zhao Y, Guan C, Chen L, et al. Effect of process parameters on the cladding track geometry fabricated by laser cladding[J]. Optik, 2020, 223: 165447. [10]Bourahima F, Helbert A L, Rege M, et al. Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: Influence of the process parameters on bonding quality and coating geometry[J]. Journal of Alloys and Compounds, 2019, 771: 1018-1028. [11]Shayanfar P, Daneshmanesh H, Janghorban K. Parameters optimization for laser cladding of Inconel 625 on ASTM A592 steel[J]. Journal of Materials Research and Technology, 2020, 9(4): 8258-8265. [12]Saeedi R, Shoja Razavi R, Bakhshi S R, et al. Optimization and characterization of laser cladding of NiCr and NiCr-TiC composite coatings on AISI 420 stainless steel[J]. Ceramics International, 2021, 47(3): 4097-4110. [13]Riquelme A, Rodrigo P, Escalera-Rodríguez M D, et al. Analysis and optimization of process parameters in Al-SiCp laser cladding[J]. Optics and Lasers in Engineering, 2016, 78: 165-173. [14]Khorram A, Davoodi Jamaloei A, Paidar M, et al. Laser cladding of Inconel 718 with 75Cr3C2+25(80Ni20Cr) powder: Statistical modeling and optimization[J]. Surface and Coatings Technology, 2019, 378: 124933. [15]Guo Y, Li C, Zeng M, et al. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding[J]. Materials Chemistry and Physics, 2020, 242: 122522. [16]Wang C, Zhang S, Zhang C H, et al. Phase evolution and wear resistance of in situ synthesized V8C7 particles reinforced Fe-based coating by laser cladding[J]. Optics & Laser Technology, 2018, 105: 58-65. [17]Yuan Y, Li Z. Growth mechanism of in-situ WC grain in Fe-Ni-W-C alloys system[J]. Journal of Alloys and Compounds, 2018, 738: 379-393. [18]Javid Y. Multi-response optimization in laser cladding process of WC powder on Inconel 718[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 31: 406-417. [19]Liu Y, Zhou J, Fu W, et al. Study on the effect of cutting parameters on bamboo surface quality using response surface methodology[J]. Measurement, 2021, 174: 109002. [20]Jerold S, Chelladurai S, Ray A P, et al. Optimization of process parameters using response surface methodology: A review[J]. Materials Today: Proceedings, 2021, 37: 1301-1304. [21]Chen T, Wu W, Li W, et al. Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model[J]. Optics & Laser Technology, 2019, 116: 345-355. [22]Kumar Khare S, Singh Phull G, Agarwal S. Optimization the machining parameters of surface roughness during micro-EDM by taguchi method[J]. Materials Today: Proceedings, 2020, 27: 475-479. [23]Li Y, Zhu L. Optimization of user experience in mobile application design by using a fuzzy analytic-network-process-based Taguchi method[J]. Applied Soft Computing, 2019, 79: 268-282. [24]Thapa S, Engelken R. Optimization of pelleting parameters for producing composite pellets using agricultural and agro-processing wastes by Taguchi-grey relational analysis[J]. Carbon Resources Conversion, 2020, 3: 104-111. |