[1]马鸣图, 吴宝榕. 双相钢物理和力学冶金[M]. 北京: 化学工业出版社, 2008. Ma Mingtu, Wu Baorong. Dual Phase Steels: Physical and Mechanical Metallurgy[M]. Beijing: Chemical Industry Press, 2008. [2]张磊峰, 宋仁伯, 赵 超, 等. 新型汽车用钢—低密度高强韧钢的研究发展[J]. 材料导报, 2014, 28(10): 111-129. Zhang Leifeng, Song Renbo, Zhao Chao, et al. Research progress of new automotive steel low density high strength-toughness steel[J]. Materials Review, 2014, 28(10): 111-117. [3]康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6): 1-7. Kang Yonglin. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron and Steel, 2008, 43(6): 1-7. [4]唐 荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6): 1-5. Tang Di, Mi Zhenli, Chen Yulai. Technology and research and development of advanced automobile steel abroad[J]. Iron and Steel, 2005, 40(6): 1-5. [5]Sohn S S, Lee S, Lee B J, et al. Microstructural developments and tensile properties of lean Fe-Mn-Al-C lightweight steels[J]. The Journal of the Minerals, Metals and Materials Society, 2014, 66(9): 1857-1867. [6]刘少尊, 厉 勇, 王春旭, 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120-124. Liu Shaozun, Li Yong, Wang Chunxu, et al. Effect of solution treatment on microstructures and properties of Fe-Mn-Al-C low density steel[J]. Heat Treatment of Metals, 2015, 40(9): 120-124. [7]郎宇平, 陈海涛, 翁宇庆, 等. 热力学计算在高氮奥氏体不锈钢研究中的应用[J]. 材料工程, 2013(5): 16-22. Lang Yuping, Chen Haitao, Weng Yuqing, et al. Applications of Thermo-Calc in research of high nitrogen austenitic stainless steels[J]. Journal of Materials Engineering, 2013(5): 16-22. [8]苏 航. 热力学、动力学计算技术在钢铁材料研究中的应用[M]. 北京: 科学出版社, 2012: 49-54. [9]Bale C W, Belisle E, Chartrand P, et al. FactSage thermochemical software and databases[J]. Calphad, 2002, 26(2): 189. [10]邓振强, 刘建华, 何 杨, 等. FeCrAl不锈钢的平衡凝固相变与析出行为[J]. 工程科学学报, 2017, 39(5): 71-81. Deng Zhenqiang, Liu Jianhua, He Yang, et al. Phase transformations and precipitation behavior in FeCrAl stainless steel during equilibrium solidification [J]. Chinese Journal of Engineering, 2017, 39(5): 71-81. [11]Sato K, Tagawa K, Inoue Y. Age hardening of an Fe-30Mn-9Al-0.9C alloy by spinodal decomposition[J]. Scripta Metallurgica, 1988, 22(6): 899-902. [12]Storchak N A, Drachinskaya A G. Strengthening nature of Fe-Mn-Al-C alloys during aging[J]. Fizika Metallov Metallovedenie, 1997, 44: 373-380. [13]Min C H, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature[J]. Materials Science and Engineering A, 2013, 586(6): 276-283. [14]王凤权, 孙 挺, 王毛球, 等. Fe-Mn-Al-C奥氏体基低密度钢的研究进展[J]. 钢铁, 2021, 56(6): 89-102. Wang Fengquan, Sun Ting, Wang Maoqiu, et al. Research progress of Fe-Mn-Al-C system austenitic low density steel[J]. Iron and Steel, 2021, 56(6): 89-102. [15]Umino R, Liu X J, Sutou Y. Experimental determination and thermodynamic calculation of phase equilibria in the Fe-Mn-Al system[J]. Journal of Phase Equilibria and Diffusion, 2006, 27: 56-62. [16]Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys[J]. Scripta Metallurgica Et Materialia, 1994, 30(4): 505-508. [17]Frommeyer G, Drewes E J, Engl B. Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels[J]. Revue De Métallurgie-International Journal of Metallurgy, 2002, 97(10): 1245-1253. [18]马 涛, 李慧蓉, 高建新, 等. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(12): 23154-23164. Ma Tao, Li Huirong, Gao Jianxin, et al. Process on strengthening mechanism and tensile properties of Fe-Mn-Al-C low density steel and prospect of Nb microalloying [J]. Material Reports, 2020, 34(12): 23154-23164. |