[1]Dimiduk D M. Gamma titanium aluminide alloys—an assessment within the competition of aerospace structural materials[J]. Materials Science and Engineering A, 1999, 263(2): 281-288. [2]Kim Y W, Kim S L. Advances in Gammalloy materials-processes-application technology: Successes, dilemmas, and future[J]. JOM, 2018, 70: 553-560. [3]Loria E A. Gamma titanium aluminides as prospective structural materials[J]. Intermetallics, 2000, 8(9): 1339-1345. [4]胡 伟, 黄泽文. 低合金化中等强度Ti-45Al-2Mn-2Nb-0.8vol%TiB2合金的热稳定性[J]. 金属热处理, 2015, 40(2): 69-76. Hu Wei, Huang Zewen. Thermal stability of a low-alloyed and intermediate strength alloy Ti-45Al-2Mn-2Nb-0.8vol% TiB2[J]. Heat Treatment of Metals, 2015, 40(2): 69-76. [5]Dahms M. Gamma titanium aluminide research and applications in Germany and Austria[J]. Advanced Performance Materials, 1994, 1(2): 157-182. [6]Das G, Bartolotta P A, Kestler H, et al. The sheet gamma TiAl technology developed under the enabling propulsion materials/high speed civil transport (EPM/HSCT) program: Sheet production and component fabrication[C]// Proceedings of the International Symposium on Structural Intermetallics. 2001, 121-130. [7]沈正章. 高Nb-TiAl合金板材制备及组织性能研究[D]. 北京: 北京科技大学, 2016. Shen Zhengzhang. The investigation of manufacturing, microstructure, properties of high Nb-TiAl alloy sheet[D]. Beijing: University of Science and Technology Beijing, 2016. [8]Gao S, Y Liang, Ye T, et al. In-situ control of microstructure and mechanical properties during hot rolling of high-Nb TiAl alloy[J]. Materialia, 2018, 1: 229-235. [9]陈永辉, 肖泽一, 李慧中, 等. TiAl基合金热轧板材的各向异性[J]. 中国有色金属学报, 2017, 27(6): 1148-1154. Chen Yonghui, Xiao Zeyi, Li Huizhong, et al. Anisotropy of TiAl alloy hot-rolling sheet[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1148-1154. [10]刘 敏. 大尺寸Ti-43Al-9V-Y合金板材的组织和性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. Liu Min. Research on microstructure and properties of large-size Ti-43Al-9V-Y alloy sheet[D]. Harbin: Harbin Institute of Technology, 2020. [11]刘宏武. (γ+α2+B2)三相TiAl合金热加工特性及组织性能研究[D]. 秦皇岛: 燕山大学, 2017. Liu Hongwu. Hot working, structure and properties of (γ+α2+B2) multiphase TiAl alloy[D]. Qinhuangdao: Yanshan University, 2017. [12]Janschek P. Wrought TiAl blades[J]. Materials Today: Proceedings, 2015, 2(S): 92-97. [13]Liu H, Li Z, Gao F, et al. High tensile ductility and strength in the Ti-42Al-6V-1Cr alloy[J]. Journal of Alloys and Compounds, 2017, 698: 898-905. [14]Zhao R, Zhou H, Zhang T, et al. Grain boundary character and microstructural evolution during hot deformation of ahigh Nb containing TiAl alloy[J]. Rare Metal Materials and Engineering, 2018, 47(7): 2927-2935. [15]曾立英, 赵永庆, 李丹柯, 等. 超塑性钛合金的研究进展[J]. 金属热处理, 2005, 30(5): 28-33. Zeng Liying, Zhao Yongqing, Li Danke, et al. Research progress on superplastic titanium alloys[J]. Heat Treatment of Metals, 2005, 30(5): 28-33. [16]Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: Status and opportunities[J]. JOM, 2004, 56(11): 42-45. |