金属热处理 ›› 2022, Vol. 47 ›› Issue (8): 249-256.DOI: 10.13251/j.issn.0254-6051.2022.08.042
刘港, 刘静, 杨峰, 向庆
收稿日期:
2022-03-04
修回日期:
2022-06-09
出版日期:
2022-08-25
发布日期:
2022-09-19
通讯作者:
杨 峰,副教授,E-mail:474820562@qq.com
作者简介:
刘 港(1997—),男,硕士研究生,主要研究方向为金属表面强化,E-mail:947505762@qq.com。
基金资助:
Liu Gang, Liu Jing, Yang Feng, Xiang Qing
Received:
2022-03-04
Revised:
2022-06-09
Online:
2022-08-25
Published:
2022-09-19
摘要: 钛合金由于存在致密钝化膜、极高的氧亲和力和较低的原子扩散系数,表面强化很难实现。但钛的碳氮化物及固溶相具备优异的性能,通过渗氮、渗碳、渗硼、渗金属4种化学热处理技术可大幅度改变合金表层组织结构,提高表面硬度和强度。对钛合金化学热处理常用技术特征、渗层微观组织结构、强化机制及力学行为进行了归纳总结,并对未来化学热处理发展前景做了展望。
中图分类号:
刘港, 刘静, 杨峰, 向庆. 钛合金化学热处理研究进展[J]. 金属热处理, 2022, 47(8): 249-256.
Liu Gang, Liu Jing, Yang Feng, Xiang Qing. Research progress of chemical heat treatment of titanium alloys[J]. Heat Treatment of Metals, 2022, 47(8): 249-256.
[1]席晓莹. TC4钛合金织构化表面复合强化工艺研究[D]. 济南: 济南大学, 2020. Xi Xiaoying. Research on composite strengthening process for textured surface of titanium alloy TC4[D]. Jinan: University of Jinan, 2020. [2]郭华锋, 孙 涛, 李菊丽, 等. 激光表面改性提高钛合金耐磨性能的研究进展[J]. 热加工工艺, 2012, 41(18): 124-129. Guo Huafeng, Sun Tao, Li Juli, et al. Research progress of improving wear resistance performance of Ti alloy by laser surface modification technology[J]. Hot Working Technology, 2012, 41(18): 124-129. [3]冷 科, 冯晓雪, 闫 峰, 等. 冷轧预处理对TC4合金540 ℃渗氮组织的影响[J]. 金属热处理, 2020, 45(8): 199-203. Leng Ke, Feng Xiaoxue, Yan Feng, et al. Effect of cold rolling pretreatment on microstructure of TC4 alloy nitrided at 540 ℃[J]. Heat Treatment of Metals, 2020, 45(8): 199-203. [4]王 琳, 孙 枫, 王 赟. α型钛合金离子渗氮工艺[J]. 金属热处理, 2018, 43(12): 166-169. Wang Lin, Sun Feng, Wang Yun. Plasma nitriding process of α titanium alloy[J]. Heat Treatment of Metals, 2018, 43(12): 166-169. [5]唐洋洋, 袁守谦, 卫琛浩, 等. TC4钛合金表面处理技术对腐蚀性能的影响[J]. 热加工工艺, 2015, 44(8): 21-23. Tang Yangyang, Yuan Shouqian, Wei Chenhao, et al. Effect of surface treatment technology on corrosion performance of TC4 titanium alloy[J]. Hot Working Technology, 2015, 44(8): 21-23. [6]徐 杰, 张春华, 张 松, 等. 钛合金表面防护技术及发展[J]. 钛工业进展, 2003, 20(3): 17-21. Xu Jie, Zhang Chunhua, Zhang Song, et al. Surface protective technology and improvement of titanium alloys[J]. Titanium Industry Progress, 2003, 20(3): 17-21. [7]刘凤岭, 李金桂, 冯自修. 钛合金表面技术的进展[J]. 腐蚀与防护, 2001, 22(2): 54-57, 92. Liu Fengling, Li Jingui, Feng Zixiu. Evolution of surface technologies for titanium alloys[J]. Corrosion and Protection, 2001, 22(2): 54-57, 92. [8]付 颖, 张 艳, 包星宇, 等. 钛合金表面耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123. Fu Ying, Zhang Yan, Bao Xingyu, et al. Research progress on wear-resistant coatings for Ti-alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(2): 117-123. [9]李坤茂. TC4钛合金真空脉冲感应渗氮层的结构与性能研究[D]. 贵阳: 贵州大学, 2020. Li Kunmao. Study on structure and properties of vacuum pulse induced nitriding layer of TC4 titanium alloy[D]. Guiyang: Guizhou University, 2020. [10]杨 闯, 刘 静, 马亚芹, 等. TC4钛合金真空渗氮组织与性能[J]. 材料热处理学报, 2015, 36(7): 188-192. Yang Chuang, Liu Jing, Ma Yaqin, et al. Microstructure and property of vacuum nitriding on TC4 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(7): 188-192. [11]王兆利, 张洋洋, 李 薇, 等. 低温面源黑体均温结构研究[J]. 真空与低温, 2012, 18(4): 201-204. Wang Zhaoli, Zhang Yangyang, Li Wei, et al. The research of uniform temperature structure for low temperature extended area blackbody[J]. Vacuum and Cryogenics, 2012, 18(4): 201-204. [12]王一龙, 俞伟元. TC4激光气体渗氮层及其耐腐蚀性能[J]. 焊接, 2019(5): 62-64, 68. Wang Yilong, Yu Weiyuan. TC4 laser gas nitriding layer and its corrosion resistance[J]. Welding and Joining, 2019(5): 62-64, 68. [13]田 华. 钛合金离子渗氮工艺研究[J]. 热处理, 2013, 28(2): 39-41. Tian Hua. Ion nitriding of titanium alloy[J]. Heat Treatment, 2013, 28(2): 39-41. [14]成亦飞, 王 琳, 贺瑞军, 等. 钛合金离子渗氮层的摩擦磨损行为[J]. 金属热处理, 2019, 44(10): 170-172. Cheng Yifei, Wang Lin, He Ruijun, et al. Friction and wear behavior of titanium plasma nitrided layer[J]. Heat Treatment of Metals, 2019, 44(10): 170-172. [15]Iordanova I, Kelly P J, Mirchev R, et al. Crystallography of magnetron sputtered tin coatings on steel substrates[J]. Vacuum, 2006, 81(7): 830-842. [16]Bhaduri D, Chattopadhyay A K. Study on the role of PVD tin coating in improving the performance of electroplated monolayer superabrasive wheel[J]. Surface and Coatings Technology, 2010, 205(2): 658-667. [17]Surowska B, Bieniaś J. Characterization of titanium nitride layer on titanium alloy[J]. Der Pharma Chemica, 2010, 7(5): 251-256. [18]Tuffy K, Byrne G, Dowling D. Determination of the optimum TiN coating thickness on WC inserts for machining carbon steels[J]. Journal of Materials Processing Technology, 2004, 155-156: 1861-1866. [19]于 翔, 王成彪, 刘 阳, 等. 中频对靶磁控溅射合成TiN/Ti多层膜[J]. 金属学报, 2006, 42(6): 662-666. Yu Xiang, Wang Chengbiao, Liu Yang, et al. TiN/Ti multilayer films synthesized by mid-frequency dual-magnetron sputtering[J]. Acta Metallurgica Sinica, 2006, 42(6): 662-666. [20]贺瑞军, 孙 枫, 王 琳, 等. 钛合金离子渗氮后的组织及耐磨性能[J]. 金属热处理, 2016, 41(4): 25-29. He Ruijun, Sun Feng, Wang Lin, et al. Microstructure and wear resistance of ion-nitrided titanium alloy[J]. Heat Treatment of Metals, 2016, 41(4): 25-29. [21]李振鹏. TA2钛合金快速渗碳工艺及组织演变规律研究[D]. 贵阳: 贵州师范大学, 2019. Li Zhenpeng. Research on rapid carburizing process and microstructure evolution of TA2 titanium alloy[D]. Guiyang: Guizhou Normal University, 2019. [22]汪旭东. Ti6Al4V钛合金固体渗碳、渗硼工艺探究及组织性能研究[D]. 镇江: 江苏大学, 2017. Wang Xudong. Research on solid carburizing and boronizing process of Ti6Al4V and its microstructure and properties[D]. Zhenjiang: Jiangsu University, 2017. [23]姬寿长, 李争显, 畅晨阳, 等. 钛表面无氢渗碳研究现状[J]. 钛工业展, 2017, 34(6): 20-25. Ji Shouchang, Li Zhengxian, Chang Chenyang, et al. Research status quo of hydrogen-free carburization on titanium alloy[J]. Titanium Industry Progress, 2017, 34(6): 20-25. [24]韩永珍, 李 俏, 徐跃明, 等. 真空低压渗碳技术研究进展[J]. 金属热处理, 2018, 43(10): 253-261. Han Yongzhen, Li Qiao, Xu Yueming, et al. Research progress of vacuum low pressure carburizing technology[J]. Heat Treatment of Metals, 2018, 43(10): 253-261. [25]Liu H Y, Che H L, Li G B, et al. Low-pressure hollow cathode plasma source carburizing technique at low temperature[J]. Surface and Coatings Technology, 2021, 422: 127511. [26]郑维能, 张新位, 高红核. 加弧辉光离子无氢渗碳在钛合金表面上的应用研究[J]. 首都师范大学学报(自然科学版), 2004(2): 31-34. Zheng Weineng, Zhang Xinwei, Gao Honghe. Study of the are-added glow discharge plasma non-hydrogen carburizing on titanium alloy surfaces[J]. Journal of Capital Normal University (Natural Science Edition), 2004(2): 31-34. [27]王耀勉, 卫娟茹, 张聪惠, 等. 高能喷丸对Ti-6Al-4V钛合金渗碳层耐磨性的影响[J]. 稀有金属, 2020, 44(5): 449-454. Wang Yaomian, Wei Juanru, Zhang Conghui, et al. Effect of high energy shot peening on wear resistance of carburized layer of Ti-6Al-4V alloy[J]. Chinese Journal of Rare Metals, 2020, 44(5): 449-454. [28]王彦峰, 李争显, 杜继红, 等. TC4钛合金表面渗碳复合TiN(Ti)膜层的抗冲蚀性能[J]. 稀有金属材料与工程, 2019, 48(6): 1878-1883. Wang Yanfeng, Li Zhengxian, Du Jihong, et al. Solid particle erosion of composite coating of gradient carburized layer and TiN(Ti) coating synthesized on TC4 alloy[J]. Rare Metal Materials and Engineering, 2019, 48(6): 1878-1883. [29]庄 唯, 王耀勉, 杨换平, 等. 钛合金渗碳处理研究进展[J]. 材料导报, 2020, 34(S2): 1344-1347, 1355. Zhuang Wei, Wang Yaomian, Yang Huanping, et al. Research progress in carburizing treatment of titanium alloys[J]. Materials Reports, 2020, 34(S2): 1344-1347, 1355. [30]赵润宇, 杨 峰, 颜志斌, 等. TA2钛合金真空渗碳层组织及性能研究[J]. 贵州师范大学学报(自然科学版), 2017, 35(6): 99-103. Zhao Runyu, Yang Feng, Yan Zhibin, et al. Study on microstructure and properties of TA2 titanium alloy vacuum carburizing[J]. Journal of Guizhou Normal University(Natural Sciences), 2017, 35(6): 99-103. [31]Dai J J, Chen C Z, Li S Y, et al. Microstructure and properties of laser surface carburized titanium and titanium alloys[J]. Advanced Materials Research, 2014, 936: 1086-1090. [32]Liu Y, Lao X S, Dai C H, et al. Study on surface structure and properties of titanium alloy modified by ion nitriding[J]. Materials Science Forum, 2020, 1005: 24-28. [33]柳文涛. Ti6Al4V离子渗氮和离子渗碳的研究[D]. 西安: 长安大学, 2008. Liu Wentao. Research ion nitriding and ion carbonizing on Ti6Al4V[D]. Xi'an: Chang'an University, 2008. [34]魏宝敏, 台立民, 迟长志. TC4钛合金固体粉末法渗硼工艺研究[J]. 热加工工艺, 2015, 44(4): 201-204. Wei Baomin, Tai Limin, Chi Changzhi. Study on technology of boronizing on TC4 titanium alloy by solid powder method[J]. Hot Working Technology, 2015, 44(4): 201-204. [35]张 毅. TC4钛合金表面硼碳共渗及其耐摩擦磨损性能研究[D]. 南京: 南京航空航天大学, 2018. Zhang Yi. Study on friction and wear properties of borocarburized layer of TC4 titanium alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. [36]姜海涛, 邵忠财, 魏守强. 钛合金表面处理技术的研究进展[J]. 电镀与精饰, 2010, 32(10): 15-20. Jiang Haitao, Shao Zhongcai, Wei Shouqiang. Research progress of surface treatment techniques for titanium alloys[J]. Plating and Finishing, 2010, 32(10): 15-20. [37]王宏宇, 陈康敏, 许晓静, 等. 钛合金Ti-6Al-4V的磨损失效及其表面耐磨处理技术[J]. 轻金属, 2005(5): 54-58. Wang Hongyu, Chen Kangmin, Xu Xiaojing, et al. Wear failure and surface abrasion resistance treatment technology of Ti-6Al-4V alloy[J]. Light Metals, 2005(5): 54-58. [38]Gokhan Kara, Gencaga Purcek. Boriding behaviour of titanium alloys with different crystalline structures[J]. Surface Engineering, 2019, 35(7): 611-617. [39]何 欢. 钛及钛合金表面固体粉末渗硼的基础研究[D]. 沈阳: 东北大学, 2015. He Huan. Basic research of solid powder boronizing on the surface of titanium and its alloy[D]. Shenyang: Northeastern University, 2015. [40]王海力. TA15钛合金固体渗硼工艺及性能的研究[D]. 南昌: 南昌航空大学, 2016. Wang Haili. Study on the process and properties of TA15 titanium alloy solid boronizing[D]. Nanchang: Nanchang Hangkong University, 2016. [41]蔡文俊, 卢文壮, 王 晗, 等. TC21钛合金稀土渗硼强化表面组织及性能[J]. 航空学报, 2015, 36(5): 1713-1721. Cai Wenjun, Lu Wenzhuang, Wang Han, et al. Microstructure and property of surface layer produce during rare earths solidstate boriding of TC21 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1713-1721. [42]Yoon J H, Jee Y K, Lee S Y. Plasma paste boronizing treatment of the stainless steel AISI 304[J]. Surface and Coatings Technology, 1999, 112(1): 71-75. [43]Ozbek I, Bindal C. Mechanical properties of boronized AISI W4 steel[J]. Surface & Coatings Technology, 2002, 154(1): 14-20. [44]冯 策. TC4钛合金表面熔盐电解渗硼工艺及性能的研究[D]. 唐山: 华北理工大学, 2016. Feng Ce. Study on the process and properties of TC4 titanium alloy surface by molten salt electrolytic boriding[D]. Tangshan: North China University of Science and Technology, 2016. [45]王碧侠, 程 亮, 田栋华. TC4钛合金熔盐电解法渗硼[J]. 金属热处理, 2015, 40(7): 133-137. Wang Bixia, Cheng Liang, Tian Donghua. Boronizing of TC4 titanium alloy by molten salt electrolysis[J]. Heat Treatment of Metals, 2015, 40(7): 133-137. [46]郑 婷. TC4钛合金表面钴基合金层的制备及性能研究[D]. 南京: 南京航空航天大学, 2010. Zheng Ting. Research on preparation and properties of Co-based alloy layer on TC4 alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. [47]吴桂兰, 戈晓岚, 许晓静, 等. TC4钛合金表面氧化镧催渗渗硼工艺优化[J]. 金属热处理, 2014, 39(9): 24-27. Wu Guilan, Ge Xiaolan, Xu Xiaojing, et al. Optimization of lanthanum oxide catalytic boronizing on surface of TC4 titanium alloy[J]. Heat Treatment of Metals, 2014, 39(9): 24-27. [48]陈 凯. TC4合金表面等离子渗Zr及Zr-N复合渗层制备及性能研究[D]. 太原: 太原理工大学, 2014. Chen Kai. Preparation and properties of plasma Zr-alloyed and Zr-N composite layers on TC4 alloy surface[D]. Taiyuan: Taiyuan University of Technology, 2014. [49]徐 斌. TiAlN基多层复合涂层的等离子体制备及其结构性能研究[D]. 太原:太原理工大学, 2019. Xu Bin. Structural and properties of TiAlN-based multilayer composite coatings fabricated by plasma[D]. Taiyuan: Taiyuan University of Technology, 2019. [50]蔡航伟, 高 原, 马志康, 等. 奥氏体不锈钢表面双辉等离子渗锆改性层的耐蚀性[J]. 稀有金属, 2013, 37(6): 915-921. Cai Hangwei, Gao Yuan, Ma Zhikang, et al. Corrosion resistance of Zr-alloyed layer on austenite stainless by double glow plasma technique[J]. Chinese Journal of Rare Metals, 2013, 37(6): 915-921. [51]王亚榕. 高Nb-TiAl合金表面抗氧化涂层制备及其高温氧化性能研究[D]. 太原:太原理工大学, 2020. Wang Yarong. Preparation and high temperature oxidation resistance of anti-oxidation coating on high Nb-TiAl alloy surface[D]. Taiyuan: Taiyuan University of Technology, 2020. [52]张红前. TiNi合金表面等离子渗Mo合金层性能的研究[D]. 太原: 太原理工大学, 2015. Zhang Hongqian. Study on properties of Mo surface-modified layer in TiNi alloy[D]. Taiyuan: Taiyuan University of Technology, 2015. |
[1] | 周丽娜, 刘明, 高翔, 王文雪, 童锐. 奥氏体化过程对Cr14Mo4V高温轴承钢微观组织的影响[J]. 金属热处理, 2022, 47(8): 7-15. |
[2] | 何博, 彭天恩, 胡学文, 蒋波, 郭锐, 石践, 汪飞, 王海波. Nb对高Ti耐候钢连续冷却后显微组织及硬度的影响[J]. 金属热处理, 2022, 47(8): 46-51. |
[3] | 张明玉, 运新兵, 伏洪旺. 热处理冷却方式对TC10钛合金组织与性能的影响[J]. 金属热处理, 2022, 47(8): 98-104. |
[4] | 彭龙生, 林英华, 黄伟, 陈皓. 感应淬火对Cr12MoV钢轧辊硬度和硬化层深度的影响[J]. 金属热处理, 2022, 47(8): 118-122. |
[5] | 魏海霞, 潘吉祥, 纪显斌, 李照国, 徐斌. 热处理对经济型高碳马氏体不锈钢J50Cr13组织和硬度的影响[J]. 金属热处理, 2022, 47(8): 148-151. |
[6] | 石向东, 李德贵, 曹阿林, 古斌, 梁柳青. 热处理温度对Al-Gd合金凝固组织和硬度的影响[J]. 金属热处理, 2022, 47(8): 182-187. |
[7] | 李向川, 杨吉春, 白国君, 樊志明. 热处理对U76CrRE稀土重轨钢夹杂物和微观组织的影响[J]. 金属热处理, 2022, 47(8): 200-210. |
[8] | 田春英, 董纪, 王军, 张慧星, 冯天建, 刘晓凡. 淬火温度对5Cr15MoV钢空冷淬火组织与性能的影响[J]. 金属热处理, 2022, 47(8): 211-216. |
[9] | 朱德荣, 李豪, 柳翊, 王利鸽, 陈智勇, 张慧贤, 梁莉. 固溶时效对SLM成形316L不锈钢块体件显微组织及硬度的影响[J]. 金属热处理, 2022, 47(8): 237-241. |
[10] | 王军, 何博, 雷益宇, 贾文静, 兰亮, 高双. 增材制造钛合金激光喷丸组织及热稳定性研究进展[J]. 金属热处理, 2022, 47(8): 242-248. |
[11] | 魏永强, 顾艳阳, 赵重轻, 蒋志强. 脉冲偏压占空比对TiSiN薄膜结构和性能的影响[J]. 金属热处理, 2022, 47(8): 279-286. |
[12] | 牛毅, 贺占胥, 王明利, 张杰, 牛文朋, 刘贯军. 离子渗氮对304不锈钢组织和性能的影响[J]. 金属热处理, 2022, 47(8): 287-291. |
[13] | 郑洪, 林文钦, 杨元熙, 徐心洁, 邓枫, 吴佳欣, 蒋洪俊. 30CrMnSiA合金前端吊耳断裂原因分析[J]. 金属热处理, 2022, 47(8): 292-295. |
[14] | 钟修杨, 邓同生, 朱志云, 李尚, 钟明, 郭涛. 时效处理对稀土钪微合金化钛合金组织与性能的影响[J]. 金属热处理, 2022, 47(7): 40-46. |
[15] | 索忠源, 杜阳, 付立铭, 单爱党. 配分工艺对5CrMnNiMo超高强度钢摩擦磨损性能的影响[J]. 金属热处理, 2022, 47(7): 134-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn