[1]Zhu Yebiao, Dong Minpeng, Li Jinlong, et al. Wear failure mechanism of TiSiN coating at elevated temperatures[J]. Applied Surface Science, 2019, 487: 349-355. [2]魏永强, 宋如蕃, 蒋志强. 脉冲偏压频率对TiSiN薄膜的微观结构和性能的影响[J]. 金属热处理, 2021, 46(11): 213-220. Wei Yongqiang, Song Rufan, Jiang Zhiqiang. Effect of pulsed bias frequency on microstructure and properties of TiSiN film[J]. Heat Treatment of Metals, 2021, 46(11): 213-220. [3]郭 岩, 李太江, 李 巍, 等. TiCrAlSiCN薄膜微观结构与性能[J]. 金属热处理, 2016, 41(11): 16-20. Guo Yan, Li Taijiang, Li Wei, et al. Microstructure and properties of TiCrAlSiCN coating[J]. Heat Treatment of Metals, 2016, 41(11): 16-20. [4]Olbrich W, Fessmann J, Kampschulte G, et al. Improved control of TiN coating properties using cathodic arc evaporation with a pulsed bias[J]. Surface and Coatings Technology, 1991, 49(1-3): 258-262. [5]黄美东, 林国强, 董 闯, 等. 偏压对电弧离子镀薄膜表面形貌的影响机理[J]. 金属学报, 2003, 39(5): 510-515. Huang Meidong, Lin Guoqiang, Dong Chuang, et al. Mechanism of effect of bias on morphologies of films prepared by arc ion plating[J]. Acta Metallrugica Sinica, 2003, 39(5): 510-515. [6]郭慧梅, 林国强, 盛明裕, 等. 大颗粒在等离子体鞘层中的受力分析与计算[J]. 金属学报, 2004, 40(10): 1064-1068. Guo Huimei, Lin Guoqiang, Sheng Mingyu, et al. Analysis and calculation of forces on macro-particles in plasma sheath[J]. Acta Metallrugica Sinica, 2004, 40(10): 1064-1068. [7]付志强, 苗志玲, 岳 文, 等. 脉冲偏压占空比对电弧离子镀TiAlN涂层的影响[J]. 稀有金属材料与工程, 2018, 47(11): 3482-3486. Fu Zhiqiang, MIao Zhiling, Yue Wen, et al. Influence of duty ratio of pulsed bias on TiAlN coatings deposited by arc ion plating[J]. Rare Metal Materials and Engineering, 2018, 47(11): 3482-3486. [8]Pohler M, Franz R, Ramm J, et al. Influence of pulsed bias duty cycle variations on structural and mechanical properties of arc evaporated (Al, Cr)2O3 coatings[J]. Surface and Coatings Technology, 2015, 282: 43-51. [9]Yi Bin, Zhou Shenghao, Qiu Zhaoguo, et al. The influences of pulsed bias duty cycle on tribological properties of solid lubricating TiMoCN coatings[J]. Vacuum, 2020, 180: 109552. [10]Salamania J, Johnson L J S, Schramm I C, et al. Influence of pulsed-substrate bias duty cycle on the microstructure and defects of cathodic arc-deposited Ti1-xAlxN coatings[J]. Surface and Coatings Technology, 2021, 419: 127295. [11]魏永强, 宗晓亚, 蒋志强, 等. 电弧离子镀中Ti大颗粒空间传输过程中受力变化特征分析[J]. 中国表面工程, 2017, 30(4): 27-35. Wei Yongqiang, Zong Xiaoya, Jiang Zhiqiang, et al. Force characteristics analysis of Ti macroparticles space transmission in arc ion plating[J]. China Surface Engineering, 2017, 30(4): 27-35. [12]王振玉, 徐 胜, 张 栋, 等. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J]. 金属学报, 2014, 50(5): 540-546. Wang Zhenyu, Xu Sheng, Zhang Dong, et al. Influence of N2 flow rate on structures and mechanical properties of TiSiN coatings prepared by HiPIMS method[J]. Acta Metallurgiga Sinica, 2014, 50(5): 540-546. [13]李林儒, 王振玉, 左 潇, 等. 直流磁控溅射和高功率脉冲磁控溅射TiSiN涂层的结构与性能比较[J]. 表面技术, 2019, 48(9): 70-77. Li Linru, Wang Zhenyu, Zuo Xiao, et al. Comparative study on structure and properties of TiSiN coatings prepared by DCMS and HiPIMS[J]. Surface Technology, 2019, 48(9): 70-77. [14]姚懿容, 李金龙, 朱丽慧, 等. 多弧离子镀制备TiSiN涂层的结构及其摩擦学行为[J]. 中国表面工程, 2015, 28(6): 20-27. Yao Yirong, Li Jinglong, Zhu Lihui, et al. Structure and tribological properties of TiSiN coatings prepared by arc ion plating[J]. China Surface Engineering, 2015, 28(6): 20-27. [15]宋智辉, 代明江, 李 洪, 等. 电弧离子镀偏压对TiAlSiN涂层结构及性能的影响[J]. 表面技术, 2020, 49(9): 306-314. Song Zhihui, Dai Mingjiang, Li Hong, et al. Effect of arc ion plating bias on structure and properties of TiAlSiN films[J]. Surface Technology, 2020, 49(9): 306-314. [16]Cheng Y H, Browne T, Heckerman B, et al. Influence of Si content on the structure and internal stress of the nanocomposite TiSiN coatings deposited by large area filtered arc deposition[J]. Journal of Physics D: Applied Physics, 2009, 42(12): 125415. [17]谢婷婷, 王向红, 吴百中, 等. 电弧离子镀TiSiN薄膜的结构及摩擦性能[J]. 材料保护, 2015, 48(2): 51-54, 58-59. Xie Tingting, Wang Xianghong, Wu Baizhong, et al. Microstructure and friction behavioe of TiSiN coatings prepared by arc ion plating[J]. Journal of Materials Protection, 2015, 48(2): 51-54, 58-59. [18]王更柱, 陈 添, 解志文, 等. Ti-Al-Si-N涂层界面微结构研究[J]. 真空科学与技术学报, 2015, 35(2): 179-183. Wang Gengzhu, Chen Tian, Xie Zhiwen, et al. Synthesis and interface structures of Ti-Al-Si-N coatings[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(2): 179-183. [19]吴 雁, 王 冰, 王 犁, 等. PVD纳米涂层致硬机理研究现状及发展[J]. 表面技术, 2020, 49(7): 90-97, 119. Wu Yan, Wang Bing, Wang Li, et al. Research status and development of hardening mechanism of PVD nano-coatings[J]. Surface Technology, 2020, 49(7): 90-97, 119. [20]Carvalho S, Rebouta L, Ribeiro E, et al. Structural evolution of Ti-Al-Si-N nanocomposite coatings[J]. Vacuum, 2009, 83(10): 1206-1212. |