[1]范 瑛, 谭 云, 陶 萍, 等. 铍青铜的性能研究综述[J]. 材料导报, 2014, 28(S1): 100-103. Fan Ying, Tan Yun, Tao Ping, et al. Summary of studies on the mechanical properties of beryllium bronze[J]. Materials Reports, 2014, 28(S1): 100-103. [2]郑良玉, 欧阳好, 巢国辉, 等. 高强高弹代铍铜钛合金研究进展[J]. 有色金属加工, 2019, 48(5): 1-6. Zheng Liangyu, Ouyang Hao, Chao Guohui, et al. Research progress on high strength and high elasticity copper-titanium alloy for substituting beryllium bronze[J]. Nonferrous Metals Processing, 2019, 48(5): 1-6. [3]龚寿鹏. 铜基弹性合金的开发与应用[J]. 有色金属加工, 2005(2): 33-35. Gong Shoupeng. Development and application of copper base elastic alloy[J]. Nonferrous Metals Processing, 2005(2): 33-35. [4]唐人剑, 王 军, 殷俊林, 等. 新型弹性合金研究[J]. 材料导报, 2005, 19(1): 54-55. Tang Renjian, Wang Jun, Yin Junlin, et al. Studies on new elastic alloy[J]. Materials Reports, 2005, 19(1): 54-55. [5]黄 富, 余方新, 冯桄波, 等. 高强铜钛合金的发展与应用[J]. 特种铸造及有色合金, 2020, 40(5): 502-506 Huang Fu, Yu Fangxin, Feng Guangbo, et al. Development and application of high strength and high elasticity copper-titanium alloys[J]. Special Casting and Nonferrous Alloys, 2020, 40(5): 502-506 [6]曹兴民, 朱玉斌, 郭富安, 等. Cu-Ti合金的热变形行为及其组织研究[J]. 稀有金属材料与工程, 2009, 38(S1): 509-514. Cao Xingmin, Zhu Yubin, Guo Fuan, et al. Hot deformation behavior and microstructure of Cu-Ti alloy[J]. Rare Metal Materials and Engineering, 2009, 38(S1): 509-514. [7]何昆哲. Cu-Ti合金时效初期相变特征及其对性能的影响[D]. 南昌: 南昌大学, 2016. He kunzhe. Phase transformation characteristic of Cu-Ti alloy during early aging and effect on properties[D]. Nanchang: Nanchang University, 2016. [8]Zhao Hongliang, Dong Yaguang, Dong Xianglei, et al. Effects of trace alloying elements Fe and Cr on the microstructure and aging properties of Cu-3Ti alloy foils[J]. Metals, 2018, 8(11): 870-881. [9]Wei Huan, Cui Yanchao, Cui Huiqi, et al. Effects of multiple trace alloying elements on the microstructure and properties of Cu-4wt.%Ti alloys[J]. Materials Science and Engineering A, 2017, 707(7): 392-398. [10]Yuan Jihui, Gong Liukui Zhang Wenqin, et al. Work softening behavior of Cu-Cr-Ti-Si alloy during cold deformation[J]. Journal of Materials Research and Technology, 2019, 8(2): 1964-1970. [11]周泽宇, 陈康华, 许 杰, 等. 微量Si和Fe对Al-Zn-Mg-Cu-Zr-Cr-Ti合金组织与性能的影响[J]. 中南大学学报(自然科学版), 2017, 48(12): 3177-3186. Zhou Zeyu, Chen Kanghua, Xu Jie, et al. Effects of minor Si and Fe additions on microstructure and properties of Al-Zn-Mg-Cu-Zr-Ti-Cr-Ti aluminum alloy[J]. Journal of Central South University, 2017, 48(12): 3177-3186. [12]Wang Xianhui, Chen Chunyu, Guo Tingting, et al. Microstructure and properties of ternary Cu-Ti-Sn alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(7): 2738-2743. [13]Lebreton V, Pachoutinski D, Bienvenu Y. An investigation of microstructure and mechanical properties in Cu-Ti-Sn alloys rich in copper[J]. Materials Science and Engineering A, 2009, 508(1/2): 83-92. [14]唐仁政. 二元合金相图及中间相晶体结构[M]. 长沙: 中南大学出版社, 2009: 65-537. [15]范清松, 田 航, 谢 梦, 等. Zr-Sn-Nb-Fe锆合金板材轧制及热处理过程中的晶粒组织演变[J]. 金属热处理, 2021, 46(7): 47-51. Fan Qingsong, Tian Hang, Xie Meng, et al. Grain microstructure evolution in Zr-Sn-Nb-Fe zirconium alloy plates during rolling and heat treatment[J]. Heat Treatment of Metals, 2021, 46(7): 47-51. [16]马玉霞, 党淑娥, 陈慧琴. 固溶处理对Cu-Cr-Zr合金组织与性能的影响[J]. 金属热处理, 2022, 47(1): 163-166. Ma Yuxia, Dang Shuer, Chen Huiqin. Effect of solution treatment on microstructure and properties of Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2022, 47(1): 163-166. [17]孙 建, 黄贞益, 李景辉, 等. 固溶和时效处理对Fe-Mn-Al-C轻质钢组织和硬度的影响[J]. 金属热处理, 2022, 47(3): 34-39. Sun Jian, Huang Zhenyi, Li Jinghui, et al. Effect of solution treatment and aging on microstructure and hardness of Fe-Mn-Al-C light weight steel[J]. Heat Treatment of Metals, 2022, 47(3): 34-39. [18]Raghavan V. Cu-Fe-Ti (copper-iron-titanium)[J]. Journal of Phase Equilibria, 2002, 23(2): 172-174. [19]Fu Huadong, Zhang Zhihao, Yang Qiang, et al. Strain-softening behavior of an Fe-6.5wt%Si alloy during warm deformation and its applications[J]. Materials Science and Engineering A, 2011, 528(3): 1391-1395. [20]李凤珍, 刘兆晶, 金 铨, 等. 铝及铝铁合金的加工软化机理[J]. 中国有色金属学报, 1997(1): 101-105. Li Fengzhen, Liu Zhaojing, Jin Quan, et al. Work-softening mechanism of pure aluminums and Al-Fe alloys[J]. The Chinese Journal of Nonferrous Metals, 1997(1): 101-105. [21]袁继慧, 陈辉明, 谢伟滨, 等. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146 . Yuan Jihui, Chen Huiming, Xie Weibin, et al. Work-softening mechanism of Cu-Cr-Ti-Si alloy[J]. Journal of Materials, 2020, 48(11): 140-146. |