[1]何西扣, 刘正东, 赵德利, 等. 中国核压力容器用钢及其制造技术进展[J]. 中国材料进展, 2020, 39(1): 509-518, 557. He Xikou, Liu Zhengdong, Zhao Deli, et al. Progress on nuclear pressure vessel steels and its manufacturing technology in China[J]. Materials China, 2020, 39(1): 509-518, 557. [2]蒋新亮. 重大技术装备用大型锻件的技术进展[J]. 中国重型装备, 2019(3): 1-4, 58. Jiang Xinliang. Technical progress of large forgings for major technical equipment[J]. China Heavy Equipment, 2019(3): 1-4, 58. [3]夏英男. 大型锻件用34CrNiMo钢再结晶及组织演变行为研究[D]. 大连: 大连理工大学, 2017. Xia Yingnan. Research on recrystallization and microstructural evolution of 34CrNiMo heavy forging steel[D]. Dalian: Dalian University of Technology, 2017. [4]杜军毅, 郑建能, 贾新胜, 等. 3.5%Ni型低温厚壁大锻件研制[C]//压力容器先进技术—第九届全国压力容器学术会议论文集. 2017: 75-84. Du Junyi, Zheng Jianneng, Jia Xinsheng, et al. R&D for 3.5%Ni type low temperature thick wall forgings[C]//Advanced Technology of Pressure Vessels-Proceedings of the 9th National Pressure Vessel Academic Conference. 2017: 75-84. [5]王存宇, 常 颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410. Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020, 56(4): 400-410. [6]Qin Dongyang, Gao Xiuhua, Liu Tao, et al. Effect of annealing process on microstructure and mechanical properties in microalloyed medium manganese steel[J]. Steel Research International, 2021, 92(4): 2000517. [7]刘 倩, 郑小平, 张荣华, 等. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220. Liu Qian, Zheng Xiaoping, Zhang Ronghua, et al. Medium manganese high strength steel for automotive application: Status quo and prospects[J]. Materials Reports, 2019, 33 (7): 1215-1220. [8]Yan Ma. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications[J]. Materials Science and Technology A, 2017, 33(15/16): 1713-1727. [9]陈毛川, 王福明, 陶素芬, 等. 40Cr钢的高温热塑性[J]. 材料热处理学报, 2014, 35(S1): 119-125. Chen Maochuan, Wang Fuming, Tao Sufen, et al. High temperature hot ductility of 40Cr steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(S1): 119-125. [10]Lv B, Zhang F C, Li M, et al. Effects of phosphorus and sulfur on the thermoplasticity of high manganese austenitic steel[J]. Materials Ssience and Engineering A, 2020, 627(21/22): 5648-5653. [11]唐兴昌, 张文娟, 王向飞, 等. 1200 MPa级冷轧双相钢组织性能及其热塑性[J]. 材料导报, 2018, 32(16): 2870-2875. Tang Xingchang, Zhang Wenjuan, Wang Xiangfei, et al. Structure and thermoplastic properties on 1200 MPa cold-rolled dual phase steel[J]. Materials Reports, 2018, 32(16): 2870-2875. [12]Suzuki H G, Nishimura S, Nakamura Y. Improvement of hot ductility of continuously cast carbon steels[J]. Transactions ISIJ, 1966, 24(2): 54-59. [13]Suzuki H G, Nishimura S, Yamaguchi S. Characteristics of hot ductility in steels subjected to the melting and solidification[J]. Transactions ISIJ, 1982, 22(l): 48-56. [14]王志刚, 余驰斌, 鲍思前, 等. Q345C连铸坯高温热塑性的研究[J]. 南方金属, 2010 (5): 22-25. Wang Zhigang, Yu Chibin, Bao Siqian, et al. A study of the thermoplasticity of Q345C steel slab[J]. Southern Metal, 2010 (5): 22-25. [15]耿明山, 张炯明. 含钒低合金钢铸坯高温延塑性研究[J]. 中国冶金, 2010, 20(3): 11-23, 17. Geng Mingshan, Zhang Jiongming. Hot ductility of vanadium micra alloy steel continuous casting slab[J]. China Metallurgy, 2010, 20(3): 11-23, 17. |