[1]张圣柱, 程玉峰, 冯晓东, 等. X80管线钢性能特征及技术挑战[J]. 油气储运, 2019, 38(5): 481-495. Zhang Shengzhu, Cheng Yufeng, Feng Xiaodong, et al. Performance characteristics and technical challenges of X80 pipeline steel[J]. Oil and Gas Storage and Transportation, 2019, 38(5): 481-495. [2]李 强, 赵家七, 蔡小锋, 等. 管线钢钙处理工艺优化[J]. 炼钢, 2019, 35(5): 37-42. Li Qiang, Zhao Jiaqi, Cai Xiaofeng, et al. Optimization of calcium treatment process for pipeline steel[J]. Steelmaking, 2019, 35(5): 37-42. [3]罗 磊, 孙彦辉, 陈 永, 等. 钙处理工艺对管线钢非金属夹杂物的影响[J]. 钢铁, 2013, 48(1): 42-45. Luo Lei, Sun Yanhui, Chen Yong, et al. Effect of calcium treatment on the non-metallic inclusions of pipeline steel[J]. Iron and Steel, 2013, 48(1): 42-45. [4]Li M, Li S, Ren Y, et al. Modification of inclusions in linepipe steels by Ca-containing ferrosilicon during ladle refining[J]. Ironmaking and Steelmaking, 2020, 47(1): 6-12. [5]尹 娜, 景财良, 李 强, 等. X80管线钢精炼过程中夹杂物行为研究[J]. 炼钢, 2013, 29(4): 49-52, 66. Yin Na, Jing Cailiang, Li Qiang, et al. Study on inclusion behavior in X80 pipeline steel during secondary refining process[J]. Steelmaking, 2013, 29(4): 49-52, 66. [6]王新华, 李秀刚, 李 强, 等. X80管线钢板夹杂物中串条状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561. Wang Xinhua, Li Xiugang, Li Qiang, et al. Control of string shaped non-metallic inclusions of CaO-Al2O3 system in X80 pipeline steel plates[J]. Acta Metallurgica Sinica, 2013, 49(5): 553-561. [7]Ito Y I, Nara S, Kato Y, et al. Shape control of alumina inclusions by double calcium addition treatment[J]. Tetsu to Hagane, 2007, 93(5): 355-361. [8]杨 清, 张立文, 张 驰, 等. 低碳Nb-V-Ti微合金钢X70的奥氏体晶粒长大行为[J]. 金属热处理, 2019, 44(4): 1-5. Yang Qing, Zhang Liwen, Zhang Chi, et al. Austenite grain growth behavior of low carbon Nb-V-Ti microalloyed steel X70[J]. Heat Treatment of Metals, 2019, 44(4): 1-5. [9]乔桂英, 郭宝峰, 陈小伟, 等. 热循环对高铌管线钢焊接热影响区冲击韧性的影响[J]. 金属热处理, 2009, 34(12): 32-35. Qiao Guiying, Guo Baofeng, Chen Xiaowei, et al. Influence of thermal cycle on impact toughness of HAZ of high-Nb pipeline steel[J]. Heat Treatment of Metals, 2009, 34(12): 32-35. [10]陈延清, 杜则裕, 许良红. X80管线钢焊接热影响区组织和性能分析[J]. 焊接学报, 2010, 31(5): 101-104, 118. Chen Yanqing, Du Zeyu, Xu Lianghong. Microstructure and mechanical properties of heat affected zone for X80 pipeline steel[J]. Transactions of the China Welding Institution, 2010, 31(5): 101-104, 118. [11]雷玄威, 吴开明, 成 林, 等. 改善高强韧管线钢焊接热影响区粗晶区韧性的现状与趋势[J]. 材料热处理学报, 2014, 35(5): 1-8. Lei Xuanwei, Wu Kaiming, Cheng Lin, et al. Current status and trend on toughness improvement of coarse-grained heat-affected zone of high strength high toughness pipeline steels[J]. Transactions of Materials and Heat Treatment, 2014, 35(5): 1-8. [12]Moon J, Lee C, Uhm S, et al. Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ considering critical particle size[J]. Acta Materialia, 2006, 54(4): 1053-1061. [13]Moon J, Kim S, Lee J, et al. Limiting austenite grain size of TiN-containing steel considering the critical particle size[J]. Scripta Materialia, 2007, 56: 1083-1086. [14]Fu J, Yu Y G, Wang A R, et al. Inclusion modification with Mg treatment for 35CrNi3MoV steel[J]. Journal of Materials Science and Technology, 1998, 14(1): 53-56. [15]Yang J, Yamasaki T, Kuwabara M. Behavior of inclusions in deoxidation process of molten steel with in situ produced Mg vapor[J]. ISIJ International, 2007, 47(5): 699-708. [16]田 俊, 王德永, 屈天鹏, 等. Mg处理对X65管线钢中夹杂物的影响[J]. 炼钢, 2018, 34(5): 43-49. Tian Jun, Wang Deyong, Qu Tianpeng, et al. Effect of magnesium treatment on inclusions in X65 pipeline steel[J]. Steelmaking, 2018, 34(5): 43-49. [17]田 俊, 王德永, 屈天鹏, 等. 钙、镁在含硫钢中硫化物变性过程中的作用[J]. 钢铁, 2017, 52(11): 27-31. Tian Jun, Wang Deyong, Qu Tianpeng, et al. Role and distinction of Ca and Mg to sulfide modification for sulfur steel[J]. Iron and steel, 2017, 52(11): 27-31. [18]Tsunekage N, Tsubakino H. Effects of sulfur content and sulfide-forming elements addition on impact properties of ferrite-pearlitic microalloyed steels[J]. ISIJ International, 2001, 41(5): 498-505. [19]Maalekian M, Radis R, Militzer M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel[J]. Acta Materialia, 2012, 60(3): 1015-1026. [20]Banerjee K, Perez M, Militzer M. Austenite grain growth kinetics during continuous heating of a microalloyed X-80 linepipe steel[J]. Materials Science Forum, 2012, 715-716: 292-296. [21]黄 源, 卫英慧. 20CrMnTi钢TiC的析出行为与奥氏体晶粒度及钢的淬透性[J]. 材料热处理学报, 1993, 14(1): 20-24. Huang Yuan, Wei Yinghui. Influence of precipitation behavior of TiC phase on austenite grain size and hardenability in 20CrMnTi steel[J]. Transactions of Materials and Heat Treatment, 1993, 14(1): 20-24. [22]Tomita Y, Saito N, Tsuzuki T, et al. Improvement in HAZ toughness of steel by TiN-MnS addition[J]. ISIJ International, 1994, 34(10): 829-835. [23]Lai C T, Lai H H, Su Y, et al. The influence of Mg-based inclusions on the grain boundary mobility of austenite in SS400 steel[J]. Metals, 2019, 9(3): 370-384. [24]Banerjee K, Militzer M, Perez M, et al. Non-isothermal austenite grain growth kinetics in the HAZ of a microalloyed X-80 linepipe steel[J]. Metallurgical and Materials Transactions A, 2010, 41: 3161-3172. [25]Vynokur B B. Influence of alloying on the free energy of austenitic grain boundaries in steel[J]. Materials Science, 1996, 32: 306-314. |