[1]杨 斌, 刘博雄, 汪 航, 等. 高性能铜合金[M]. 长沙: 中南大学出版社, 2020: 22-24. [2]Mao Q, Wang L, Nie J, et al. Enhancing strength and electrical conductivity of Cu-Cr composite wire by two-stage rotary swaging and aging treatments[J]. Composites Part B: Engineering, 2021, 231: 109567. [3]Fu H D, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Materials Science and Engineering A, 2017, 700: 107-115. [4]Batra I S, Dey G K, Kulkarni U D, et al. Precipitation in a Cu-Cr-Zr alloy[J]. Materials Science Engineering A, 2002, 356(1/2): 32-36. [5]Chakrabarti D J, Laughlin D E. The Cr-Cu(chromium-copper) system[J]. Journal of Phase Equilibria and Diffusion, 1984, 5(1): 59-68. [6]Chbihi A, Sauvage X, Blavette D. Atomic scale investigation of Cr precipitation in copper[J]. Acta Materialia, 2012, 60(11): 4575-4585. [7]Peng L J, Xie H F, Huang G J, et al. The phase transformation and strengthening of a Cu-0.71wt%Cr alloy[J]. Journal of Alloys Compounds, 2017, 708: 1096-1102. [8]Batawi E, Morris D G, Morris M A. Effect of small alloying additions on behaviour of rapidly solidified Cu-Cr alloys[J]. Metal Science Journal, 1990, 6(9): 892-899. [9]刘 月, 肖 柱, 李 周, 等. 形变热处理对Cu-Cr-Ag合金组织和性能的影响[J]. 稀有金属, 2018, 42(4): 337-343. Liu Yue, Xiao Zhu, Li Zhou, et al. Properties and microstructure evolution of Cu-Cr-Ag alloy with thermomechanical treatments[J]. Chinese Journal of Rare Metals, 2018, 42(4): 337-343. [10]Hatakeyama M, Toyama T, Nagai Y, et al. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe[J]. Materials Transactions, 2008, 49(3): 518-521. [11]Hatakeyama M, Toyama T, Yang J, et al. 3D-AP and positron annihilation study of precipitation behavior in Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials, 2009, 386-388: 852-855. [12]Chen J, Yang B, Wang J, et al. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys[J]. Materials Research Express, 2018, 5(2): 55-60. [13]慕思国, 汤玉琼, 郭富安, 等. Cu-Cr-Zr系合金非真空熔炼过程的热力学分析[J]. 中国有色金属学报, 2007, 17(8): 1330-1335. Mu Siguo, Tang Yuqiong, Guo Fuan, et al. Thermodynamic analysis for non-vacuum melting of Cu-Cr-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(8): 1330-1335. [14]Wang H, Gong L, Liao J, et al. Retaining meta-stable fcc-Cr phase by restraining nucleation of equilibrium bcc-Cr phase in CuCrZrTi alloys during ageing[J]. Journal of Alloys and Compounds, 2018, 749: 140-145. [15]Zhao Z, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu-Cr alloy[J]. Journal of Alloys and Compounds, 2018, 752: 191-197. [16]Liu Y, Li Z, Jiang Y, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment[J]. Journal of Materials Research, 2017, 32(7): 1324-1332. [17]Wan X, Xie W, Chen H, et al. First-principles study of phase transformations in Cu-Cr alloys[J]. Journal of Alloys and Compounds, 2021, 862: 158531. [18]Peng H, Xie W, Chen H, et al. Effect of micro-alloying element Ti on mechanical properties of Cu-Cr alloy[J]. Journal of Alloys and Compounds, 2021, 852: 157004. [19]彭丽军. Cu-Cr-Zr系合金微观组织演变规律及合金元素交互作用机理的研究[D]. 北京: 北京有色金属研究总院, 2014. Peng Lijun. Study on microstructure evolution of Cu-Cr-Zr system alloys and interaction mechanism between alloying elements[D]. Beijing: General Research Institute for Nonferrous Metals, 2014. [20]Xia C, Zhang W, Kang Z, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments[J]. Materials Science and Engineering A, 2012, 538: 295-301. [21]Wu S J, Wang J F, Chen H M, et al. Magnesium addition in copper-chromium alloys: The refinement of aging precipitates and improvement on mechanical properties[J]. Materialwissenschaft Und Werkstofftechnik, 2019, 50(12): 1450-1458. [22]Okamoto H. Phase Diagram for Binary Alloys[M]. OH: ASM International, 2000: 307-326. |