[1]Mohd M H, Paik J K. Investigation of the corrosion progress characteristics of offshore subsea oil well tubes[J]. Corrosion Science, 2013, 67: 130-141. [2]Wu W, Hao W K, Liu Z Y, et al. Corrosion behavior of E690 high-strength steel in alternating wet-dry marine environment with different pH values[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 4636-4646. [3]Wu W, Liu Z, Li X, et al. Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere[J]. Materials Science and Engineering A, 2019, 759: 124-141. [4]Wu W, Liu Z Y, Li X G, et al. Electrochemical characteristic and stress corrosion behavior of API X70 high-strength pipeline steel under a simulated disbonded coating in an artificial seawater environment[J]. Journal of Electroanalytical Chemistry, 2019, 845: 92-105. [5]严 翔. 船体结构用HSLA100钢热处理工艺、组织及性能研究[D]. 武汉: 武汉科技大学, 2015. Yan Xiang. Study on the heat treatment processing, microstructures and mechanical properties of hull ship HSLA-100 steel[D]. Wuhan: Wuhan University of Science and Technology, 2015. [6]张 鹏, 严 玲, 周 成, 等. 淬火工艺对大厚度690 MPa级海工钢板组织性能的影响[J]. 金属热处理, 2018, 43(10): 107-110. Zhang Peng, Yan Ling, Zhou Cheng, et al. Effect of quenching process on microstructure and properties of heavy thickness 690 grade marine engineering steel plat[J]. Heat Treatment of Metals, 2018, 43(10): 107-110. [7]袁胜福. 高性能海洋工程用钢组织调控及力学性能研究[D]. 北京: 北京科技大学, 2020. Yuan Shengfu. Study on the microstructure controlling and mechanical properties of high-performance offshore engineering steel[D]. Beijing: University of Science and Technology Beijing, 2020. [8]魏 晨, 宋仁伯, 霍巍丰, 等. V-Ti微合金化E690级海洋工程用钢不同回火温度下的耐腐蚀性能研究[C]//中国材料研究学会. 中国材料大会2021论文集. 2021: 369-374. Wei Chen, Song Renbo, Huo Weifeng, et al. A study of corrosion resistance of V-Ti micro-alloyed E690 offshore platform steel establishment at different tempering temperatures[C]//China Materials Research Society. Proceedings of China Materials Conference 2021. 2021: 369-374. [9]孙明雪. 超低碳纳米富Cu相强化HSLA钢组织性能调控机理研究[D]. 沈阳: 东北大学, 2017. Sun Mingxue. Study on regulation mechanism for microstructure and mechanical properties of carbon nano-sized Cu precipitation strengthened HSLA steel[D]. Shenyang: Northeastern University, 2017. [10]曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008. [11]Fan Yueming, Liu Wei, Li Shimin, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion[J]. Journal of Materials Science and Technology, 2020, 39(4): 185-194. [12]Zhao T, Liu Z, Du C, et al. Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater[J]. International Journal of Fatigue, 2018, 110: 105-114. [13]Ma H, Liu Z, Du C, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater[J]. Materials Science and Engineering A, 2015, 642: 22-31. [14]Zhao Y, Liu W, Zhang T, et al. Assessment of the correlation between M23C6 precipitates and pitting corrosion resistance of 0Cr13 martensitic stainless steel[J]. Corrosion Science, 2021, 189: 109580. [15]Lin X, Liu W, Wu F, et al. Effect of O2 on corrosion of 3Cr steel in high temperature and high pressure CO2-O2 environment[J]. Applied Surface Science, 2015, 329: 104-115. [16]Wang L, Dong C, Yao J, et al. The effect of η-Ni3Ti precipitates and reversed austenite on the passive film stability of nickel-rich Custom 465 steel[J]. Corrosion Science, 2019, 154: 178-190. [17]Ungár T, Dragomir I, Borbély A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice[J]. Journal of Applied Crystallography, 1999, 32(5): 992-1002. [18]Hajyakbary F, Sietsma J, BÖttger A J, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures[J]. Materials Science and Engineering A, 2015, 639: 208-218. [19]李东营. 基于晶体塑性理论的超薄带材轧制数值模拟[D]. 秦皇岛: 燕山大学, 2017. Li Dongying. Ultra-thin strip rolling numerical simulation based on the crystal plasticity theory[D]. Qinhuangdao: Yanshan University, 2017. [20]孙晓文, 林诗慧, 王天生. 高碳高硅纳米贝氏体钢回火后的组织与力学性能[J]. 材料热处理学报, 2021, 42(6): 98-106. Sun Xiaowen, Lin Shihui, Wang Tiansheng. Microstructure and mechanical properties of tempered high-C-Si nano-bainite steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(6): 98-106. [21]Escriva-Cerdan C, Ooi S W, Joshi G R, et al. Effect of tempering heat treatment on the CO2 corrosion resistance of quench-hardened Cr-Mo low-alloy steels for oil and gas applications[J]. Corrosion Science, 2019, 154: 36-48. [22]Dwivedi D, Lepková K, Becker T. Carbon steel corrosion: A review of key surface properties and characterization methods[J]. Rsc Advances, 2017, 7(8): 4580-4610. [23]李德发, 吴开明, 官计生, 等. 夹杂物属性对NM500耐磨钢腐蚀性能的影响[J]. 金属热处理, 2019, 44(11): 81-84. Li Defa, Wu Kaiming, Guan Jisheng, et al. Effect of inclusion types on corrosion resistance of NM500 wear-resistant steel[J]. Heat Treatment of Metals, 2019, 44(11): 81-84. [24]Hong I T, Koo C H. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Materials Science and Engineering A, 2005, 393(1/2): 213-222. |