[1]束国钢. 超临界锅炉用T/P91钢的组织性能与工程应用 [M]. 西安: 陕西科学技术出版社, 2006: 3-6. Shu Guogang. Microstructure, Properties and Engineering Application of T/P91 Steel for Supercritical Boiler [M]. Xi'an: Shaanxi Science and Technology Press, 2006: 3-6. [2]Kaneko K, Matsumura S, Sadakata A, et al. Characterization of carbides at different boundaries of 9Cr-steel [J]. Materials Science & Engineering A, 2004, 374(1/2): 82-89. [3]钟万里, 李正刚, 王 伟, 等. 高温应力时效后T91钢组织与性能的演变 [J]. 武汉大学学报(工学版), 2012, 45(1): 91-95, 102. Zhong Wanli, Li Zhenggang, Wang Wei, et al. Evolution of high temperature and stress time effect on microstructure and properties of T91 steels [J]. Engineering Journal of Wuhan University, 2012, 45(1): 91-95, 102. [4]张巧凤, 胡丽娟, 刘 珂, 等. T91钢550 ℃时效初期析出相演变行为研究 [J]. 上海金属, 2018, 40(2): 11-18. Zhang Qiaofeng, Hu Lijuan, Liu Ke, et al. Study on evolution of precipitates in T91 steel over initial period of aging at 550 ℃ [J]. Shanghai Metals, 2018, 40(2): 11-18. [5]张 冰, 王国亮, 肖功业, 等. 长期时效P91钢的组织与性能 [J]. 材料热处理学报, 2013, 34(4): 123-127. Zhang Bing, Wang Guoliang, Xiao Gongye, et al. Microstructure and properties of P91 steel after long-term aging [J]. Transactions of Materials and Heat Treatment, 2013, 34(4): 123-127. [6]Adam Z, Marcin M, Boz·ena B, et al. Forecasting in the presence of microstructural changes for the case of P91 steel after long-term ageing [J]. Archives of Civil and Mechanical Engineering, 2016, 16(4): 813-824. [7]田 竞, 王志武, 宋 涛. 700 ℃时效过程中T91钢的组织与性能 [J]. 金属热处理, 2017, 42(5): 47-53. Tian Jing, Wang Zhiwu, Song Tao. Microstructure and properties of T91 steel during aging at 700 ℃ [J]. Heat Treatment of Metals, 2017, 42(5): 47-53. [8]黄金督, 梅建平, 晏井利, 等. T91钢时效过程中的组织老化和性能变化 [J]. 金属热处理, 2016, 41(11): 45-49. Huang Jindu, Mei Jianping, Yan Jingli, et al. Microstructural degradation and properties evolution of T91 steel during aging [J]. Heat Treatment of Metals, 2016, 41(11): 45-49. [9]杨 旭. 高铬马氏体耐热钢组织老化、性能退化及剩余寿命评估 [D]. 秦皇岛: 燕山大学, 2017. Yang Xu. Microstructure aging, property degradation and residual creep life evaluation of high-chromium martensitic heat-resistant steel [D]. Qinhuangdao: Yanshan University, 2017. [10]陈 炜. 回火参数对40CrNi2Mo材料性能与组织的影响 [J]. 热处理技术与装备, 2018, 39(1): 30-32. Chen Wei. Effect of tempering parameters on properties and microstructure of 40CrNi2Mo material [J]. Heat Treatment Technology and Equipment, 2018, 39(1): 30-32. [11]Thelining K E. Steel and Its Heat Treatment [M]. London: Butterworths, 1984: 288-300. [12]Ham R K. The determination of dislocation densities in thin films [J]. Philosophical Magazine, 1961, 6(69): 1183-1184. [13]Surya D Y, Szilvia K, Maria D, et al. Evolution of the substructure of a novel 12%Cr steel under creep conditions[J]. Materials Characterization, 2016, 115: 23-31. [14]Maruyama K, Sawada K, Koike J I. Strengthening mechanisms of creep resistant tempered martensitic steel [J]. ISIJ international, 2001, 41(6): 641-653. [15]Panait C G, Zielinska-Lipiec A, Koziel T, et al. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600 ℃ for more than 100 000 h [J]. Materials Science & Engineering A, 2010, 527(16-17): 4062-4069. [16]Paul V T, Saroja S, Vijayalakshmi M. Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures [J]. Journal of Nuclear Materials, 2008, 378(3): 274-281. [17]吴术全, 韩 涛, 姜世凯, 等. 某超临界机组用P91钢的强度退化行为 [J]. 机械工程材料, 2021, 45(1): 28-33, 40. Wu Shuquan, Han Tao, Jiang Shikai, et al. Strength degradation behavior of P91 steel for a supercritical unit [J]. Materials for Mechanical Engineering, 2021, 45(1): 28-33, 40. [18]Xu Yang, Bo Liao, Xiao Furen, et al. Ripening behavior of M23C6 carbides in P92 steel during aging at 800 ℃ [J]. Journal of Iron & Steel Research, 2017, 24(8): 858-864. [19]王印培. 钢的硬度值与屈服强度之间的经验关系 [J]. 化工与通用机械, 1982(12): 59-61. [20]Filip S, Ludek S, Hynek H, et al. Strengthening mechanisms of different oxide particles in 9Cr ODS steel at high temperatures [J]. Materials Science & Engineering A, 2018, 732: 112-119. [21]Chauhan A, Bergner F, Etienne A, et al. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars [J]. Journal of Nuclear Materials, 2018, 495: 6-19. [22]Hald J. Microstructure and long-term creep properties of 9-12%Cr steels [J]. International Journal of Pressure Vessels and Piping, 2008, 85(1/2): 30-37. [23]Yamada S, Yaguchi M, Ogata T. Microstructural change of a 9Cr steel longitudinal welded tube under internal pressure creep loading[J]. Materials Science and Engineering A, 2013, 560: 450-457. [24]Qiang L. Modeling the microstructure-mechanical property relationship for a 12Cr-2W-V-Mo-Ni power plant steel [J]. Materials Science & Engineering A, 2003, 361(1/2): 385-391. |