[1]王东伟, 战东平, 邱国兴, 等. 回火温度对CLAM钢组织及性能的影响 [J]. 材料热处理学报, 2020, 41(3): 124-130. Wang Dongwei, Zhan Dongping, Qiu Guoxing, et al. Effect of tempering temperature on microstructure and properties of CLAM steel [J]. Transactions of Materials and Heat Treatment, 2020, 41(3): 124-130. [2]牛 犇, 王镇华, 潘钱付, 等. 核电用铁素体/马氏体耐热钢的性能与成分研究进展 [J]. 材料导报, 2020, 34(10): 19141-19151. Niu Ben, Wang Zhenhua, Pan Qianfu, et al. Research progress on properties and composition of ferritic/martensitic heat-resistant steels for nuclear powder [J]. Materials Reports, 2020, 34(10): 19141-19151. [3]吕亮亮, 李垣明, 周 毅, 等. 快堆用HT-9研究进展 [J]. 核动力工程, 2016, 37(S1): 30-33. Lü Liangliang, Li Yuanming, Zhou Yi, et al. Research progress on fast reactor HT-9 [J]. Nuclear Power Engineering, 2016, 37(S1): 30-33. [4]Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steel for fusion application [J]. Journal of Nuclear Materials, 1996, 233-237: 138-147. [5]Michaud P, Delagnes D, Lamesle P, et al. The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels [J]. Acta Materialia, 2007, 55: 4877-4889. [6]Kim H K, Lee J W, Moon J, et al. Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors [J]. Journal of Nuclear Materials, 2018, 500: 327-336. [7]尚仲夏. 先进核电高铬铁素体/马氏体钢的制备及组织性能研究 [D]. 上海: 上海交通大学, 2015. Shang Zhongxia. Preparation and microstructure studies of high-chromium ferritic/martensitic steels for advanced nuclear power plant [D]. Shanghai: Shanghai Jiao Tong University, 2015. [8]黄礼新. CLAM钢高温组织演变与力学性能研究 [D]. 秦皇岛: 燕山大学, 2014. Huang Lixin. Study on evolution of microstructure and mechanical properties at elevated temperature for CLAM steel [D]. Qinhuangdao: Yanshan University, 2014. [9]潘钱付, 牛 犇, 贾玉振, 等. 热处理工艺对Fe-12Cr马氏体钢组织与力学性能的影响 [J]. 材料热处理学报, 2020, 41(5): 102-109. Pan Qianfu, Niu Ben, Jia Yuzhen, et al. Effect of heat treatment on microstructure and mechanical properties of Fe-12Cr martensitic steel [J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 102-109. [10]崔辰硕, 高秀华, 苏冠侨, 等. 正火对高Cr马氏体耐热钢组织和性能的影响 [J]. 东北大学学报(自然科学版), 2018, 39(1): 40-44. Cui Chenshuo, Gao Xiuhua, Su Guanqiao, et al. Effect of normalizing on microstructure and properties of high chromium martensitic heat resistant steels [J]. Journal of Northeastern University (Natural Science), 2018, 39(1): 40-44. [11]Ma Tingwei, Hao Xianchao, Wang Ping. Effect of heat treatments on microstructural evolution and tensile properties of 15Cr12MoVWN ferritic/martensitic steel [J]. Metals, 2020, 10: 1271. [12]张建斌, 刘 帆, 薛 飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响 [J]. 材料导报, 2018, 32(4): 1318-1322. Zhang Jianbin, Liu Fan, Xue Fei. Effect of heat treatment on delta-ferrite and impact toughness of P91 heat-resistant steel [J]. Materials Review, 2018, 32(4): 1318-1322. [13]Lee J S, Armaki H G, Maruyama K, et al. Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel [J]. Materials Science and Engineering A, 2006, 428: 270-275. [14]Fan Ruicheng, Gao Ming, Ma Yingche, et al. Effects of heat treatment and nitrogen on microstructure and mechanical properties of 1CrNiMo martensitic stainless steel [J]. Journal of Materials Science & Technology, 2012, 28(11): 1059-1066. [15]Yan Biyu, Liu Yongchang, Wang Zejun, et al. The effect of precipitate evolution on austenite grain growth in RAFM steel [J]. Materials, 2017, 10: 1017. [16]Long Shaolei, Liang Yilong, Jiang Yun, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel [J]. Materials Science and Engineering A, 2016, 676: 38-47. [17]崔忠圻, 覃耀春. 金属学与热处理[M]. 2版. 北京: 机械工业出版社, 2010. [18]Fernandez P, Hoffmann J, Rieth M, et al. Microstructure and precipitation behavior of advanced RAFM steels for high-temperature application on fusion reactors [J]. Materials Characterization, 2021, 180: 111443. [19]Zhou Xiaosheng, Liu Chenxi, Yu Liming, et al. Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review [J]. Journal of Materials Science & Technology, 2015, 31: 235-242. [20]Saini N, Pandey C, Mahapatra M M. Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature [J]. Materials Science and Engineering A, 2017, 688: 250-261. [21]Pandey C, Giri A, Mahapatra M M. Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel [J]. Materials Science and Engineering A, 2016, 657: 173-184. [22]Chun Y B, Kang S H, Noh S, et al. Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic-martensitic steel [J]. Journal of Nuclear Materials, 2014, 455: 212-216. |