[1]张 格. 起落架: 飞机的“腿”[J]. 大飞机, 2015, 4: 97-98. [2]周长春, 庄景涵. 基于故障树分析的CESSNA172R飞机起落架故障诊断[J]. 中国民航飞行学院学报, 2001, 32(3): 11-14. Zhou Changchun, Zhuang Jinghan. Fault diagnosis of CESSNA172R aircraft landing gear based on fault tree analysis[J]. Journal of Civil Aviation Flight University of China, 2001, 32(3): 11-14. [3]Qiang Guo, Liu Jianhua, Yu Mei, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity[J]. Acta Metallurgica Sinica, 2015, 28(2): 139-146. [4]Daymond Benjamin T, Binot Nicolas, Schmidt Michael L, et al. Development of Custom 465 corrosion-resisting steel for landing gear applications[J]. Journal of Materials Engineering & Performance, 2016, 25(4): 1539-1553. [5]章伟钢, 韩 顺, 厉 勇, 等. 大型客机用300M钢疲劳破坏行为[J]. 钢铁, 2017, 52(10): 83-88. Zhang Weigang, Han Shun, Li Yong, et al. Behavior of fatigue fracture of 300M steel for large passenger aircraft[J]. Iron & Steel, 2017, 52(10): 83-88. [6]孙 颖, 袁 旭. 硫含量对超高强度钢塑性的影响[J]. 工程技术研究, 2014, 3: 21-24. Sun Ying, Yuan Xu. Influence of sulfur content on the plasticity of ultra high strength steels[J]. Engineering and Technological Research, 2014, 3: 21-24. [7]Puneeth Kumar N, Srikantappa A S. A study on effect of sulphur and phosphorous on the mechanical characteristics of C45 steel[J]. Materials Today: Proceedings, 2022, 54(2): 437-440. [8]Hong Youshi, Lei Zhengqiang, Sun Chengqi, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels[J]. International Journal of Fatigue, 2014, 58: 144-151. [9]Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime[J]. International Journal of Fatigue, 2014, 64: 114-120. [10]Karr Ulrike, Schuller Reinhard, Fitzka Michael, et al. Influence of inclusion type on the very high cycle fatigue properties of 18Ni maraging steel[J]. Journal of Materials Science, 2017, 52(10): 5954-5967. [11]Amrita Bag, Dorian Delbergue, Philippe Bocher, et al. Statistical analysis of high cycle fatigue life and inclusion size distribution in shot peened 300M steel[J]. International Journal of Fatigue, 2019, 118: 126-138. [12]Prasannavenkatesan Rajesh, Zhang Jixi, Mcdowell David L, et al. 3D modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels[J]. International Journal of Fatigue, 2009, 31(7): 1176-1189. [13]Tian Jialong, Wang Wei, Li Huabing, et al. Understanding main factors controlling high cycle fatigue crack initiation and propagation of high strength maraging stainless steels with Ti addition[J]. Materials Science and Engineering A, 2021, 805: 140589. [14]李明睿, 王荣桥, 田腾跃, 等. 喷丸强化DD6单晶合金低周疲劳寿命预测[J]. 表面技术, 2022, 51(10): 1-9. Li Mingrui, Wang Rongqiao, Tian Tengyue, et al. Low cycle fatigue life prediction of DD6 single crystal superalloy by shot peening[J]. Surface Technology, 2022, 51(10): 1-9. [15]华 程, 姚 兰, 杨 屹, 等. 复合喷丸强化对PH13-8Mo钢旋转弯曲疲劳寿命的影响[J]. 材料保护, 2022, 55(8): 125-129. Hua Cheng, Yao Lan, Yang Yi, et al. Effect of composite shot peening on the rotating bending fatigue life of PH13-8Mo steel[J]. Materials Protection, 2022, 55(8): 125-129. [16]张吉银, 姚倡锋, 谭 靓, 等. 喷丸强化残余应力对疲劳性能和变形控制影响研究进展[J]. 机械工程学报, 2022, 58: 1-15. Zhang Jiyin, Yao Changfeng, Tan Liang, et al. Research progress of the effect of shot peening residual stress on fatigue performance and deformation control[J]. Journal of Mechanical Engineering, 2022, 58: 1-15. |