[1]Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys[J]. Acta Materialia, 2007, 55(12): 4067-4109. [2]汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177-351. Wang Weihua. The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33(5): 177-351. [3]Wang Y B, Li H F, Zheng Y F, et al. Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses[J]. Materials Science and Engineering C, 2012, 32(3): 599-606. [4]Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses[J]. Progress in Materials Science, 2010, 55(8): 759-839. [5]Li H F, Zheng Y F. Recent advances in bulk metallic glasses for biomedical applications[J]. Acta Biomaterialia, 2016, 36: 1-20. [6]乔吉超, 张浪渟, 童 钰, 等. 基于微观结构非均匀性的非晶合金力学行为[J]. 力学进展, 2022(1): 117-152. Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechanical properties of amorphous alloys: In the framework of the microstructure heterogeneity[J]. Advances in Mechanics, 2022(1): 117-152. [7]Wang T, Zhou Y, Zhang L. Chemical and structural heterogeneity improve the plasticity of a Zr-based bulk metallic glass at low-temperature annealing[J]. Journal of Non-Crystalline Solids, 2023, 603: 122115. [8]Lei T J, DaCosta L R, Liu M, et al. Microscopic characterization of structural relaxation and cryogenic rejuvenation in metallic glasses[J]. Acta Materialia, 2019, 164: 165-170. [9]Li W, Gao Y, Bei H. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses[J]. Scientific Reports, 2015, 5(1): 1-15. [10]Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses[J]. Progress in Materials Science, 2011, 56(4): 379-473. [11]Ding J, Cheng Y Q, Ma E. Quantitative measure of local solidity/liquidity in metallic glasses[J]. Acta Materialia, 2013, 61(12): 4474-4480. [12]Wang T, Zhang L, Hou Q, et al. Improvement the plasticity of Fe-based bulk metallic glass via low temperature annealing[J]. Journal of Non-Crystalline Solids, 2021, 569: 120965. [13]Saida J, Yamada R, Wakeda M. Recovery of less relaxed state in Zr-Al-Ni-Cu bulk metallic glass annealed above glass transition temperature[J]. Applied Physics Letters, 2013, 103(22): 1-4. [14]Slipenyuk A, Eckert J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass[J]. Scripta Materialia, 2004, 50(1): 39-44. [15]Wang T, Ma X, Chen Y, et al. Structural heterogeneity originated plasticity in Zr-Cu-Al bulk metallic glasses[J]. Intermetallics, 2020, 121: 106790.[16]Qiao J C, Casalini R, Pelletier J M. Main (α) relaxation and excess wing in Zr50Cu40Al10 bulk metallic glass investigated by mechanical spectroscopy[J]. Journal of Non-Crystalline Solids, 2015, 407: 106-109. [17]Wang T, Hou Q, Zhang L. Enhanced heterogeneity and plasticity in a Zr-Cu-Al bulk metallic glass with micro-addition of oxygen[J]. Materials Science and Engineering A, 2022, 831: 142222. [18]Zhou W H, Duan F H, Meng Y H, et al. Effect of alloying oxygen on the microstructure and mechanical properties of Zr-based bulk metallic glass[J]. Acta Materialia, 2021, 220: 117345. [19]Hou Q, Wang T, Zhou J, et al. The improvement of the plasticity of a Zr-Ni-Al bulk metallic glass by static quenching[J]. Materials Science and Engineering A, 2022, 851: 143624. [20]Dmowski W, Fan C, Morrison M L, et al. Structural changes in bulk metallic glass after annealing below the glass-transition temperature[J]. Materials Science and Engineering A, 2007, 471(1/2): 125-129. [21]Louzguine-Luzgin D V, Jiang J, Bazlov A I, et al. Phase separation process preventing thermal embrittlement of a Zr-Cu-Fe-Al bulk metallic glass[J]. Scripta Materialia, 2019, 167: 31-36. [22]Louzguine-Luzgin D V. Bulk Metallic Glasses and Glassy/Crystalline Materials[M]. Cham: Springer Series in Materials Science, 2016: 397-440. [23]Du X H, Huang J C, Hsieh K C, et al. Two-glassy-phase bulk metallic glass with remarkable plasticity[J]. Applied Physics Letters, 2007, 91: 131901. |