[1]娄菊红. SiCf/Ti-6Al-4V复合材料的宏-细观力学性能研究[D]. 西安: 西北工业大学, 2014. Lou Juhong. Study on macro and micro mechanical properties of SiCf/Ti-6Al-4V composites[D]. Xi'an: Northwestern Polytechnical University, 2014. [2]成小乐, 尹 君, 屈银虎, 等. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术及界面特性研究综述[J]. 材料导报, 2018, 32(5): 796-807. Cheng Xiaole, Yin Jun, Qu Yinhu, et al. A review of the state-of-art preparation techniques and interface characteristics of continuous-silicon-fiber-reinforced titanium matrix (SiCf/Ti) composites[J]. Materials Review, 2018, 32(5): 796-807. [3]王玉敏, 张国兴, 张 旭, 等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016, 52(10): 1153-1170. Wang Yumin, Zhang Guoxing, Zhang Xu, et al. Advances in SiC fiber reinforced titanium matrix composites[J]. Acta Metallurgica Sinica, 2016, 52(10): 1153-1170. [4]原梅妮, 杨延清, 马志军, 等. SiC纤维增强钛基复合材料界面强度研究进展[J]. 稀有金属材料与工程, 2007, 36(6): 1115-1118. Yuan Meini, Yang Yanqing, Ma Zhijun, et al. Research progresses on interfacial bonding strength of SiC fiber reinforced titanium matrix composites[J]. Rare Metal Materials and Engineering, 2007, 36(6): 1115-1118. [5]李 健. SiCf/Ti基复合材料界面的第一性原理研究[D]. 西安: 西北工业大学, 2014. Li Jian. First-principles study on the interface of SiCf/Ti composite[D]. Xi'an: Northwestern Polytechnical University, 2014. [6]Huang B, Li M, Chen Y, et al. Interfacial reaction in SiCf/Ti-6Al-4V composite by using transmission electron microscopy[J]. Materials Characterization, 2015, 109: 206-215. [7]杨延清, 文 琼, 马志军, 等. SiC/Ti-6Al-4V复合材料界面反应的扫描电镜分析[J]. 稀有金属快报, 2004, 23(7): 22-25. Yang Yanqing, Wen Qiong, Ma Zhijun, et al. Investigations on interfacial reaction of SiC/Ti-6Al-4V by scanning electron microscope[J]. Rare Metals Letters, 2004, 23(7): 22-25. [8]Martineau P, Pailler R, Lahaye M, et al. SiC filament/titanium matrix composites regarded as model composites - Part 2 Fiber/matrix chemical interactions at high temperatures[J]. Journal of Materials Science, 1984, 19(8): 2749-2770. [9]Yang Y Q, Ma Z J, Lu X H, et al. Studies on interface of SiCf/Ti-6AI-4V composites[J]. Rare Metal Materials and Engineering, 2006, 35(10): 1516-1521. [10]Martineau P, Lahaye M, Pailler R, et al. SiC filament/titanium matrix composites regarded as model composites[J]. Journal of Materials Science, 1984, 19(8): 2731-2748. [11]Morozumi S, Endo M, Kikuchi M, et al. Bonding mechanism between silicon carbide and thin foils of reactive metals[J]. Journal of Materials Science, 1985, 20(11): 3976-3982. [12]Naka M, Feng J C, Schuster J C. Phase reaction and diffusion path of the SiC/Ti system[J]. Metallurgical and Materials Transactions A, 1997, 28: 1385-1390. [13]Lu H X, Yang Y Q, Hang B, et al. Reaction diffusion in continuous SiC fiber reinforced Ti matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(1): 27-34. [14]Fu Y C, Shi N L, Zhang D Z, et al. Effect of C coating on the interfacial microstructure and properties of SiC fiber-reinforced Ti matrix composites[J]. Materials Science and Engineering A, 2006, 426(1/2): 278-282. [15]Ngai T, Hu C X, Zheng W, et al. High temperature stability of SiC/Ti interface[J]. Materials Science Forum, 2011, 685: 340-344. [16]窦翔宇. 反应-扩散调控材料成核过程的分子动力学模拟[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020. Dou Xiangyu. Molecular dynamic simulation of material nucleation process regulated by chemical reaction and diffusion[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2020. [17]唐伟强. 纳微界面体系扩散/反应密度泛函理论研究[D]. 上海: 华东理工大学, 2020. Tang Weiqiang. Density functional theory studies on the diffusion/reaction in nano- and microscale interfacial systems[D]. Shanghai: East China University of Science and Technology, 2020. [18]Zhao Y N, Chen Y F, Ai S G, et al. A diffusion, oxidation reaction and large viscoelastic deformation coupled model with applications to SiC fiber oxidation[J]. International Journal of Plasticity, 2019, 118: 173-189. [19]吕祥鸿, 杨延清, 马志军, 等. SiC/Ti6Al4V复合材料界面反应扩散系数和微观扩散机理[J]. 稀有金属材料与工程, 2007, 36(6): 941-948. Lü Xianghong, Yang Yanqing, Ma Zhijun, et al. Interfacial reaction diffusion coefficients and micro-diffusion mechanism in SiC/Ti6A14V composite[J]. Rare Metal Materials and Engineering, 2007, 36(6): 941-948. [20]Chen J K, Beraun J E. A simple model for interfacial phase growth in metal matrix composites[J]. Composites Part A: Applied Science & Manufacturing, 2000, 31(7): 727-731. [21]Lacoste E, Arvieu C, Afzali M S, et al. Heat and mass transfer modeling and simulation during liquid route processing of SiC/Ti filamentary composites[J]. Numerical Heat Transfer, 2009, 56(9): 709-726. [22]吕祥鸿, 杨延清. Ti基复合材料界面反应扩散的微观分析[J]. 材料工程, 2008(6): 21-24, 28. Lü Xianghong, Yang Yanqing. Micro-analysis of interfacial reaction diffusion in Ti matrix composite[J]. Journal of Materials Engineering, 2008(6): 21-24, 28. [23]Zhao Z P, Zhang X M, Wu Z Z, at al. Competitive failure mechanism and load tolerance of solder joint under thermo-mechano-electrical coupling[J]. Mechanics of Materials, 2021, 163: 104104. [24]Zhao Z Z, Zhang X M, Tan S L, et al. Growth of intermetallic compounds in solder joints based on strongly coupled thermos-mechano-electro-diffusional theory[J]. Microelectronics Reliability, 2020, 107(9): 113621. [25]Tan S, Zhang X, Zhao Z, et al. Driving force evolution in solid-state sintering with coupling multiphysical fields[J]. Ceramics International, 2020, 46(8): 11584-11592. [26]赵学庄, 罗渝然. 化学反应动力学原理, 上册[M]. 北京: 高等教育出版社, 1990. [27]Wang H, Suo Y, Shen S. Reaction-diffusion-stress coupling effect in inelastic oxide scale during oxidation[J]. Oxidation of Metals, 2015, 83(5/6): 507-519. [28]Kuang Z B. Variational principles for generalized thermodiffusion theory in pyroelectricity[J]. Acta Mechanica, 2010, 214(3/4): 275-289. [29]Yan Z, Zhang X, Tan S, et al. Numerical investigation on nonisothermal solid diffusion without phase transition using a full coupling theory combine with phase field method[J]. Numerical Heat Transfer Applications, 2018, 74(2): 1-14. [30]赵志鹏, 张晓敏, 谭树林, 等. 焊点金属间化合物生长的相场法模拟[J]. 电子元件与材料, 2020, 39(3): 52-58. Zhao Zhipeng, Zhang Xiaomin, Tan Shulin, et al. Phase field simulation of intermetallic compounds growth in solder joint[J]. Electronic Components & Materials, 2020, 39(3): 52-58. [31]Sherief H H, Hamza F A, Saleh H A. The theory of generalized thermoelastic diffusion[J]. International Journal of Engineering Science, 2004, 42(5/6): 591-608. [32]Arvieu C, Manaud J P, Quenisset J M. Interaction between titanium and carbon at moderate temperatures[J]. Journal of Alloys & Compounds, 2004, 368(1/2): 116-122. [33]De Barros M I, Rats D, Vandenbulcke L, et al. Influence of internal diffusion barriers on carbon diffusion in pure titanium and Ti-6Al-4V during diamond deposition[J]. Diamond & Related Materials, 1999, 8(6): 1022-1032. [34]Iijima Y, Lee S Y, Hirano K I. Diffusion of silicon, germanium and tin in β-titanium[J]. Philosophical Magazine A, 1993, 68(5): 901-914. [35]朱 艳. SiC纤维增强Ti基复合材料界面反应研究[D]. 西安: 西北工业大学, 2003. Zhu Yan. Study on the interfacial reactions of SiC fiber reinforced Ti-matrix composites[D]. Xi'an: Northwestern Polytechnical University, 2003. [36]陈 福, 方万标, 赵恩录, 等. 高性能陶瓷材料Ti3SiC2的研究进展[J]. 陶瓷, 2006, 12: 19-22. Chen Fu, Fang Wanbiao, Zhao Enlu, et al. Progress in research on Ti3SiC2 high-performance ceramic material[J]. Ceramics, 2006, 12: 19-22. [37]刘 明. 原位合成Ti5Si3基复合材料及其性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. Liu Ming. Synthesis and properties of Ti5Si3 matrix in-situ composites[D]. Harbin: Harbin Engineering University, 2012. [38]Kishida K, Fujiwara M, Adachi H, et al. Plastic deformation of single crystals of Ti5Si3 with the hexagonal D88 structure[J]. Acta Materialia, 2010, 58(3): 846-857. [39]刘 阳, 曾令可. 碳化钛陶瓷及应用[M]. 北京: 化学工业出版社, 2008. [40]Yash P, Yung C S. Assessment of sub-surface damage during machining of additively manufactured Fe-TiC metal matrix composites[J]. Journal of Materials Processing Technology, 2019, 266: 173-183. |