[1]Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): 1487. [2]Liu G, Zhang X, Chen X, et al. Additive manufacturing of structural materials[J]. Materials Science and Engineering R: Reports, 2021, 145: 100596. [3]谭超林, 周克崧, 马文有, 等. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52. Tan Chaolin, Zhou Kesong, Ma Wenyou, et al. Research progress of laser additive manufacturing of maraging steels[J]. Acta Metallurgica Sinica, 2020, 56(1): 36-52. [4]时 雨, 卫广智, 赵 飞. 18Ni(1700 MPa)型马氏体时效钢时效工艺研究[J]. 兵器材料科学与工程, 2013, 36(3): 89-91. Shi Yu, Wei Guangzhi, Zhao Fei. Aging process of 18Ni(1700 MPa) maraging steel[J]. Ordnance Material Science and Engineering, 2013, 36(3): 89-91. [5]康 凯. 选区激光成形用18Ni-300粉末特性及成形件组织结构的研究[D]. 重庆: 重庆大学, 2014. [6]Cyr E, Lloyd A, Mohammadi M. Tension-compression asymmetry of additively manufactured maraging steel[J]. Journal of Manufacturing Processes, 2018, 35: 289-294. [7]韩 顺, 王春旭, 厉 勇, 等. 锻比对18Ni(250)马氏体时效钢组织及性能的影响 [J]. 锻压技术, 2020, 45(10): 192-197. Han Shun, Wang Chunxu, Li Yong, et al. Effect of forging ratio on microstructure and properties of 18Ni(250)maraging steel [J]. Forging & Stamping Technology, 2020, 45(10): 192-197. [8]Mutua J, Nakata S, Onda T, et al. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel[J]. Materials and Design, 2018, 139: 486-497. [9]Contuzzi N, Campanelli S L, Casavola C, et al. Manufacturing and characterization of 18Ni marage 300 lattice components by selective laser melting[J]. Materials, 2013, 6(8): 3451-3468. [10]Król M, Snopiński P, Hajnyš J, et al. Selective laser melting of 18Ni-300 maraging steel[J]. Materials, 2020, 13(19): 4268. [11]Greco S, Gutzeit K, Hotz H, et al. Selective laser melting (SLM) of AISI 316L-impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5): 1551-1562. [12]Saedi S, Moghaddam N S, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi[J]. Acta Materialia, 2018, 144: 552-560. [13]Bai Y C, Yang Y Q, Wang D, et al. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting[J]. Materials Science and Engineering A, 2017, 703: 116-123. [14]Na T W, Kim W R, Yang S M, et al. Effect of laser power on oxygen and nitrogen concentration of commercially pure titanium manufactured by selective laser melting [J]. Materials Characterization, 2018, 143: 110-117. [15]Karliński, W, Tacikowski J, Wojtyra K. Fatigue strength of nitrided 18Ni250 and 18Ni300 grade maraging steels[J]. Surface Engineering, 1999, 15(6): 483-489. [16]Yang X, Gao F, Tang F, et al. Effect of surface oxides on the melting and solidification of 316L stainless steel powder for additive manufacturing[J]. Metallurgical and Materials Transactions A, 2021, 52(10): 4518-4532. [17]Wang D, Wu S, Fu F, et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials and Design, 2017, 117: 121-130. [18]Hozoorbakhsh A, Ismail M I S, Aziz N B A. A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding[J]. International Communications in Heat and Mass Transfer, 2015, 68: 178-187. [19]Seikh A H, Halfa H, Baig M, et al. Microstructure characterization and corrosion resistance behavior of new cobalt-free maraging steel produced through ESR techniques[J]. Journal of Materials Engineering and Performance, 2017, 26(4): 1589-1597. |