[1]Wang Jue, Xue Hao, Wang Ying. Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000 ℃[J]. Rare Metals, 2021, 40(3): 616-625. [2]Ma Wenbin, Luo Hongyun, Yang Xiaoguang. The effects of grain size and twins density on high temperature oxidation behavior of nickel-based superalloy GH738[J]. Materials, 2020, 13(18): 4166. [3]李铁藩. 21世纪高温氧化的发展方向[J]. 材料保护, 2000, 33(1): 12-15. Li Tiefan. Developing trend of high temperature oxidation protection in 21st century[J]. Materials Protection, 2000, 33(1): 12-15. [4]彭建强. 高温合金材料在汽轮机高温部件上的应用[J]. 东方汽轮机, 2017(3): 58-62. Peng Jianqiang.Application of superalloy materials to high-temperature components of steam turbine[J]. Dongfang Turbine, 2017(3): 58-62. [5]高 双, 侯介山, 杨 飞, 等. 两种铸造镍基合金的高温氧化行为[J]. 稀有金属材料与工程, 2019 48(3): 960-966. Gao Shuang, Hou Jieshan, Yang Fei, et al. High temperature oxidation behaviors of two cast Ni-based superalloys[J]. Rare Metal Materials and Engineering, 2019 48(3): 960-966. [6]Hu Yebing, Zhang Li, Cheng Congqian, et al. Oxidation behavior of the nickel-based superalloy DZ125 at 980 ℃[J]. Acta Metallurgica Sinica, 2017, 30(9): 1-6. [7]王 睿. 镍基高温合金的研究和应用[J]. 当代化工研究, 2017(7): 50-51. Wang Rui.Research and application of nickel-based high temperature alloy[J]. Modern Chemical Research, 2017(7): 50-51. [8]Cao Jiangdong, Zhang Junsong, Hua Yinqun, et al. High temperature oxidation behavior of Ni-based superalloy GH586 in air[J]. Rare Metals, 2017, 36(11): 878-885. [9]时 龙, 齐美娜, 姜紫薇, 等. 高温合金表面防护渗层研究进展[J]. 科学大众, 2019(10): 188. Shi Long, Qi Meina, Jiang Ziwei,et al. Research progress of protective coating on the surface of superalloy[J]. Popular Science, 2019(10): 188. [10]Wang Chaur-Jeng, Chen Shih-Ming. The high-temperature oxidation behavior of hot-dipping Al-Si coating on low carbon steel[J]. Surface and Coatings Technology, 2006, 200(22/23): 6601-6605. [11]李涌泉, 谢发勤, 吴向清, 等. TiAl合金表面Si-Al-Y共渗层的组织及高温抗氧化性能[J]. 无机材料学报, 2013, 28(12): 1369-1375. Li Yongquan, Xie Faqin, Wu Xiangqing, et al. Microstructure and high temperature oxidation resistance of Si-Al-Y co-deposition coatings prepared on TiAl alloy by pack cementation process[J]. Journal of Inorganic Materials, 2013, 28(12): 1369-1375. [12]娄 瑾, 杨世伟, 向军淮. 三种铝硅涂层的抗氧化性能研究[J]. 材料热处理学报, 2007(3): 130-133. Lou Jin, Yang Shiwei, Xiang Junhuai.Study on oxidation resistance of Al-Si coatings on K4104 superalloy[J]. Transactions of Materials and Heat Treatment, 2007(3): 130-133. [13]Ghasemiansafaei M, Rastegari S, Latifi R. The effect of powder composition on the cyclic oxidation behavior of Co-deposited Al-Si coating on nickel-base superalloy[J]. Iranian Journal of Materials Science and Engineering, 2020, 17(2): 104-115. [14]Taha M A, El-Mahallawy N A, Hammouda R M, et al. PVD coating of Mg-AZ31 by thin layer of Al and Al-Si[J]. Journal of Coatings Technology and Research, 2010, 7(6): 793-800. [15]Sun Jianfeng, Zhou Yuebo, Zhang Haijun.. Preparation and oxidation behavior of a novel CeO2-modified chromizing coating[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5): 1375-1381. [16]Zhang Haijun, Sun Jianfeng. Fabrication and cyclic oxidation of Y2O3/CeO2-modified low temperature aluminide coatings[J]. Rare Metal Materials and Engineering, 2017, 46(2): 301-306. [17]Ye Liya, Chen Hongfei, Yang Guang, et al. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling[J]. Progress in Natural Science:Materials International, 2018, 28(1): 34-39. [18]顿易章, 吴 勇, 张 磊. CVD法在镍基高温合金表面制备改性铝化物渗层的研究进展[J]. 金属热处理, 2018, 43(3): 145-151. Dun Yizhang, Wu Yong, Zhang Lei. Research progress of application of CVD method in preparation of modified aluminide coating on nickel base superalloy[J]. Heat Treatment of Metals, 2018, 43(3): 145-151. [19]Wang Jiqiang, Kong Lingyan, Li Tiefan, et al. Oxidation behavior of thermal barrier coatings with a TiAl3 bond coat on γ-TiAl alloy[J]. Journal of Thermal Spray Technology, 2015, 24(3): 467-475. [20]Yang Xiuying, Peng Xiao, Wang Fuhui. A novel electrodeposited Ni-Cr-Al nanocomposite with improved oxidation resistance[J]. Advanced Materials Research, 2012, 472-475: 137-140. [21]曹将栋, 童福利. 粉末包埋法制备镍基高温合金Al-Cr-Y渗层的高温氧化行为[J]. 稀有金属材料与工程, 2019, 48(11): 3448-3454. Cao Jiangdong, Tong Fuli. High-temperature oxidation behavior of Al-Cr-Y coating on Ni-based superalloy prepared by pack cementation[J]. Rare Metal Materials and Engineering, 2019, 48(11): 3448-3454. [22]吴多利, 姜肃猛, 范其香 等. 镍基高温合金Al-Cr渗层的恒温氧化行为[J]. 金属学报, 2014, 50(10); 1170-1178. Wu Duoli, Jiang Sumeng, Fan Qixiang, et al. Isothermal oxidation behavior of Al-Cr coating on Ni-based superalloy[J]. Acta Metallurgica Sinica, 2014, 50(10): 1170-1178. [23]时 龙, 齐美娜. K38合金表面粉末包埋法Al-Si共渗研究[J]. 广东化工, 2020, 47(21): 11-12. Shi Long, Qi Meina.Study of Al-Si co-deposition on K38 superalloy by powder cementation process[J]. Guangdong Chemical Industry, 2020, 47(21): 11-12. [24]蔡 槐. 钛合金包埋渗铝及硅铝共渗层组织结构与高温抗氧化性能[D]. 哈尔滨: 哈尔滨工业大学, 2017. Cai Huai. Microstructure and high temperature oxidation resistance properties of packing Al and Al-Si cementation on TA15 alloy[D]. Harbin: Harbin Institute of Technology, 2017. [25]张丽娜. K438镍基高温合金Al-Si渗层的制备及抗氧化性研究[D]. 沈阳: 东北大学, 2014. Zhang Lina. Preparation and oxidation properties of the Si-modified aluminized coating on Ni-based superalloy K438[D]. Shenyang: Northeastern University, 2014. |