[1]张永振, 宋克兴, 杜三明, 等. 载流摩擦学[M]. 北京: 科学出版社, 2016: 1-12. [2]Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(6910): 912-915. [3]Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501-14505. [4]Long J Z, Pan Q S, Tao N R, et al. Improved fatigue resistance of gradient nanograined Cu[J]. Acta Materialia, 2019, 166: 56-66. [5]Li G D, Liu M W, Lyu S Y, et al. Simultaneously enhanced strength and strain hardening capacity in FeMnCoCr high-entropy alloy via harmonic structure design[J]. Scripta Materialia, 2021, 191: 196-201. [6]Ma K, Li X N, Liu K, et al. Improving the high-cycle fatigue strength of heterogeneous carbon nanotube/Al-Cu-Mg composites through grain size design in ductile-zones[J]. Composites Part B, 2021, 222: 109094. [7]Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7(10): 393-398. [8]Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals[J]. Materials Today, 2017, 20(6): 323-331. [9]Wang Y F, Wang M S, Fang X T, et al. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces[J]. International Journal of Plasticity, 2019(123): 196-207. [10]Abib K, Azzeddine H, Tirsatine K, et al. Thermal stability of Cu-Cr-Zr alloy processed by equal-channel angular pressing[J]. Materials Characterization, 2016(118): 527-534. [11]Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation[J]. Carbon, 2020, 157: 602-613. |