[1]陈迦杉. 热处理工艺对轴承钢碳化物偏析行为的影响[D]. 沈阳: 东北大学, 2018. Chen Jiashan. Effect of heat treatment on carbide segregation of bearing steel[D]. Shenyang: Northeastern University, 2018. [2]庄 权, 王雨田, 董智鹏. 高碳铬轴承钢网状碳化物评价标准的对比分析[J]. 金属热处理, 2021, 46(6): 27-30. Zhuang Quan, Wang Yutian, Dong Zhipeng. Comparative analysis of evaluation standards of carbide network in high carbon chromium bearing steel[J]. Heat Treatment of Metals, 2021, 46(6): 27-30. [3]赵 辉, 杨建立, 黄 勇, 等. GCr15SiMo高淬透性轴承钢的热处理工艺研究[J]. 热加工工艺, 2020, 49(14): 131-133. Zhao Hui, Yang Jianli, Huang Yong, et al. Study on heat treatment process of GCr15SiMo high hardenability bearing steel[J]. Hot Working Technology, 2020, 49(14): 131-133. [4]孔永华, 李思贝, 周江龙, 等. 等温淬火工艺对GCr15钢领组织和耐磨性的影响[J]. 金属热处理, 2016, 41(7): 95-99. Kong Yonghua, Li Sibei, Zhou Jianglong, et al. Effect of austempering process parameters on microstructure and wear resistance of GCr15 steel spinning ring[J]. Heat Treatment of Metals, 2016, 41(7): 95-99. [5]韩 斌, 于宗洋, 李 涛. GCr15轴承钢大圆材的球化退火工艺[J]. 金属热处理, 2015, 40(1): 90-93. Han Bin, Yu Zongyang, Li Tao. Spheroidizing annealing process of big size bar of bearing steel GCr15[J]. Heat Treatment of Metals, 2015, 40(1): 90-93. [6]孙小东, 王云广, 王红伟, 等. 淬火方式对GCr15SiMo钢制特大型轴承套圈淬硬层的影响[J]. 热处理技术与装备, 2020, 41(3): 31-34. Sun Xiaodong, Wang Yunguang, Wang Hongwei, et al. Effect of quenching method on hardened layer of GCr15SiMo steel oversize bearing ring[J]. Heat Treatment Technology and Equipment, 2020, 41(3): 31-34. [7]Yang Z N, Dai L Q, Chu C H. Effect of aluminum alloying on the hot deformation behavior of nano-bainite bearing steel[J]. Journal of Materials Engineering and Performance, 2017, 26(12): 1-9. [8]闫光成, 叶健熠. GCr15SiMo钢等温淬火的组织与性能[J]. 轴承, 2006(9): 21-22. Yan Guangcheng, Ye Jianyi. Structure and properties of steel GCr15SiMo austempered[J]. Bearing, 2006(9): 21-22. [9]谢燮揆, 王文明. 高淬透性轴承钢GCr15SiMo的工艺性能[J]. 金属热处理, 1993, 18(11): 9-13. Xie Xiekui, Wang Wenming. Technological property of high harden ability steel GCr15SiMo[J]. Heat Treatment of Metals, 1993, 18(11): 9-13. [10]单 珺. 含Al贝氏体轴承钢的快速球化工艺及接触疲劳性能研究[D]. 秦皇岛: 燕山大学, 2014. Shan Jun. Study on accelerating spheroidization and contact fatigue property of bainitic bearing steels containing aluminum[D]. Qinhuangdao: Yanshan University, 2014. [11]程东妹, 郑善举, 郝晓东. 轴承钢的球化退火工艺[J]. 热加工工艺, 2016, 45(16): 30-33. Cheng Dongmei, Zheng Shanju, Hao Xiaodong. Spheroidizing annealing process for bearing steel[J]. Hot Working Technology, 2016, 45(16): 30-33. [12]王 奇, 李晓源, 时 捷, 等. 等温球化退火温度对高碳钢组织的影响[J]. 金属热处理, 2016, 41(11): 88-92. Wang Qi, Li Xiaoyuan, Shi Jie, et al. Effect of isothermal spheroidizing annealing temperature on microstructure of high carbon steel[J]. Heat Treatment of Metals, 2016, 41(11): 88-92. [13]王斯华, 郝小龙, 肖 杰, 等. 10B21低碳合金钢等温球化退火工艺研究[J]. 金属制品, 2021, 47(6): 17-24. Wang Sihua, Hao Xiaolong, Xiao Jie, et al. Research on isothermal spheroidizing annealing process of 10B21 low carbon alloy steel[J]. Metal Products, 2021, 47(6): 17-24. [14]余 斌. 高碳硅锰钢球化退火工艺研究及其对组织和性能的影响[D]. 昆明: 昆明理工大学, 2015. |