[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [3]Mishra R S, Kumar N, Komarasamy M, Lattice strain framework for plastic deformation in complex concentrated alloys including high entropy alloys[J]. Materials Science and Technology, 2015, 31(10): 1259-1263. [4]Gludovatz B, Hohenwarter A, Thurston K, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature Communications, 2016, 7: 10602. [5]Zhu Z G, Nguyen Q B, Ng F L, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154: 20-24. [6]Zhu Y T, Liao X. Nanostructured metals: Retaining ductility[J]. Nature Materials, 2004, 3(6): 351-352. [7]Gwalani B, Gorsse S, Choudhuri D, et al. Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing[J]. Acta Materialia, 2018, 153: 169-185. [8]Bracke L, Verbeken K, Kestens L, et al. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel[J]. Acta Materialia, 2009, 57(5): 1512-1524. [9]Slone C E, Miao J, George E P, et al. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures[J]. Acta Materialia, 2018, 165: 496-507. [10]Zheng X, Xie W, Zeng L, et al. Achieving high strength and ductility in a heterogeneous-grain-structured CrCoNi alloy processed by cryorolling and subsequent short-annealing[J]. Materials Science and Engineering A, 2021, 821: 141610. |