[1]杨晓霞. 国内外铝工业现状及发展前景[J]. 有色金属加工, 2016, 45(1): 4-7, 39. Yang Xiaoxia. Current status and development prospects of aluminum industry at home and abroad[J]. Nonferrous Metals Processing, 2016, 45(1): 4-7, 39. [2]Saleema N, Sarkar D K, Paynter R W, et al. A simple surface treatment and characterization of AA6061 aluminum alloy surface for adhesive bonding applications[J]. Applied Surface Science, 2012, 261: 742-748. [3]Yue T M, Yan L J, Chan C P, et al. Excimer laser surface treatment of aluminum alloy AA7075 to improve corrosion resistance[J]. Surface and Coatings Technology, 2004, 179(2/3): 158-164. [4]Yerokhin A L, Lyubimov V V, Ashitkov R V. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminum alloys[J]. Ceramics International, 1998, 24(1): 1-6. [5]Shen D, Li G, Guo C, et al. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation[J]. Applied Surface Science, 2013, 287(24): 451-456. [6]Huang D, Zhang X Y, Wu D F, et al. Effects of rare earth (RE) additives onperformances of micro-arc oxidation coatings formed on aluminum alloy[J]. Advanced Materials Research, 2014, 850-851: 140-143. [7]Lugovskoy A, Zinigrad M, Kossenko A, et al. Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes[J]. Applied Surface Science, 2013, 264: 743-747. [8]田好鹏. 6061铝合金微弧氧化机理及ZrO2复合膜研究[D]. 南昌: 南昌航空大学, 2016. Tian Haopeng. Micro-arc oxidation mechanism and ZrO2 composite film of 6061 aluminum alloy[D]. Nanchang: Nanchang Hangkong University, 2016. [9]Sukumaran A, Sampatirao H, Balasubramanian R, et al. Formation of ZrO2-SiC composite coating on zirconium by plasma electrolytic oxidation in different electrolyte systems comprising of SiC nanoparticles[J]. Transactions of the Indian Institute of Metals, 2018, 71(7): 1699-1713. [10]Xiang N, Song R G, Zhao J, et al. Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminum alloy by micro-arcoxidation[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3323-3328. [11]Chen Q Z, Jiang Z Q, Tang S G, et al. Influence ofgraphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties[J]. Applied Surface Science, 2017, 423: 939-950. [12]Zhuang J, Song R, Zheng C. Effect of current density on microstructure and corrosion behavior of plasma electrolytic oxidation coated 6063 aluminum alloy[J]. Journal of Wuhan University of Technology, 2018, 33(6): 1503-1510. [13]Dehnavi V, Luan B L, Shoesmith D W, et al. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior[J]. Surface and Coatings Technology, 2013, 226: 100-107. [14]Egorkin V, Vyaliy I, Minaev A, et al. Morphological features and electrochemical properties of the hydrophobized sealed PEO-coatings on Al alloy[J]. Solid State Phenomena, 2016, 245: 137-143. [15]王 平, 王春华, 杨 军, 等. 封孔处理对ZL108铸铝微弧氧化膜性能的影响[J]. 材料保护, 2011, 44(10): 51-52, 74, 8. Wang Peng, Wang Chunhua, Yang Jun, et al. Effect of sealing treatment on properties of ZLl08 cast aluminum microarc oxidation film[J]. Journal of Materials Protection, 2011, 44(10): 51-52, 74, 8. [16]樊轩虎, 郝建民, 陈永楠, 等. 聚丙烯酰胺封孔工艺参数对铝合金微弧氧化膜封孔的影响[J]. 热加工工艺, 2016, 45(10): 58-60. Fan Xuanhu, Hao Jianmin, Chen Yongnan, et al. Effect of polyacrylamide sealing process parameters on sealing of aluminum alloy micro-arc oxidation film[J]. Hot Working Technology, 2016, 45(10): 58-60. [17]Majumdar J D, Manna I. Laser surface alloying of copper with chromium II. Improvement in mechanical properties[J]. Materials Science and Engineering A, 1999, 268(1/2): 227-235. [18]Mateos J, Cuetos J M, Fernandez E, et al. Tribological behavior of plasma-sprayed WC coatings with and without laser remelting[J]. Wear, 2000, 239(2): 274-281. [19]杨 武. WE43镁合金微弧氧化复合工艺及膜层组织与耐蚀性能研究[D]. 镇江: 江苏科技大学, 2017. Yang Wu. Micro-arc oxidation composite process of WE43 magnesium alloy and its microstructure and corrosion resistance[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017. [20]喻 杰, 韦东波, 王 岩, 等. 激光重熔改性铝合金微弧氧化膜层的组织与性能[J]. 无机材料学报, 2013, 28(8): 859-863. Yu Jie, Wei Dongbo, Wang Yan, et al. Microstructure and properties of micro-arc oxidation coating on laser remelted modified aluminum alloy[J]. Journal of Inorganic Materials, 2013, 28(8): 859-863. [21]唐仕光, 陈泉志, 蒋智秋, 等. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164. Tang Shiguang, Chen Quanzhi, Jiang Zhiqiu, et al. Effect of laser remelting treatment on microstructure and properties of microarc oxidation coating on aluminum alloy[J]. Journal of Materials Engineering, 2018, 46(12): 157-164. [22]Yang X, Chen L, Qu Y, et al. Optical emission spectroscopy of plasma electrolytic oxidation process on 7075 aluminum alloy[J]. Surface and Coatings Technology, 2017, 324: 18-25. [23]狄士春, 喻 杰, 王 岩, 等. 多孔微弧氧化膜层的热传导和激光重熔行为研究[J]. 稀有金属材料与工程, 2014, 43(6): 1432-1436. Di Shichun, Yu Jie, Wang Yan, et al. Heat conduction and laser surface melting behavior of the porous micro-arc oxidation coating[J]. Rare Metal Materials and Engineering, 2014, 43(6): 1432-1436. [24]张春燕, 杨 武, 马 超. 镁合金激光重熔后微弧氧化膜的微观组织和耐蚀性能[J]. 材料保护, 2017, 50(2): 5-9. Zhang Chunyan, Yang Wu, Ma Chao. Microstructure and corrosion resistance of microarc oxidation film after laser remelting of magnesium alloy[J]. Journal of Materials Protection, 2017, 50(2): 5-9. [25]曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008: 180-194. [26]Pezzato L, Brunelli K, Dabalà M. Corrosion properties of plasma electrolytic oxidation coated AA7075 treated using an electrolyte containing lanthanum-salts[J]. Surface and Interface Analysis, 2016, 48(8): 729-738. |