[1]朱丽慧, 赵钦新, 顾海澄, 等. 10Cr9Mo1VNbN耐热钢强化机理研究[J]. 机械工程材料, 1999, 23(1): 6-8. Zhu Lihui, Zhao Qinxin, Gu Haicheng, et al. Investigation on the strengthening mechanism of 10Cr9Mo1VNbN heat-resistant steel[J]. Materials for Mechanical Engineering, 1999, 23(1): 6-8. [2]于在松, 周荣灿, 王弘喆, 等. 高温服役138 000 h后T91钢显微组织结构分析[J]. 热力发电, 2008, 37(12): 20-25. Yu Zaisong, Zhou Rongcan, Wang Hongzhe, et al. Microstructure analysis of T91 steel after 130 000 h in service under high temperature[J]. Thermal Power Generation, 2008, 37(12): 20-25. [3]王 学, 张 珣, 占良飞. T91钢组织退化行为及对高温持久强度的影响[J]. 中国电机工程学报, 2012, 32(26): 137-142. Wang Xue, Zhang Xun, Zhan Liangfei, et al. Microstructure degradation behavior and its influence on high temperature stress rupture limit of T91 steel[J]. Proceedings of the CSEE, 2012, 32(26): 137-142. [4]Kimura K, Kushima H, Abe F. Heterogeneous changes in microstructure and degradation behavior of 9Cr-1Mo-V-Nb steel during long term creep[C]// International Conference on Creep and Fracture of Engineering Materials and Structures. 2000, 171-174: 483-490. [5]Wang Xue, Wang Xiao, Li Huijun, et al. Laves phase precipitation behavior in the simulated fine-grained heat-affected zone of creep strength enhanced ferritic steel P92 and its role in creep void nucleation and growth[J]. Weld World, 2017, 61: 231-239. [6]Dimmler G, Weinert P, Kozeschnik E, et a1. Quantification of the Laves phase in advanced 9%-12%Cr steels using a standard SEM[J]. Materials Characterization, 2003, 51(5): 341-352. [7]Cerjak H, Hofer P, Schaffernak B. Microstructural aspects on creep behaviour of advanced power plant steels[J]. Key Engineering Materials, 2000, 171-174: 453-460. [8]Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels[J]. Materials Science and Engineering A, 2004, 387/389: 565-569. [9]王 学, 于淑敏, 任遥遥. P92 钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202. Wang Xue, Yu Shumin, Ren Yaoyao. Laves phase evolution in P92 steel during ageing[J]. Acta Metallurgica Sinica, 2014, 50(10): 1195-1202. [10]张红军, 刘树涛, 范长信. 国产P91钢在蠕变过程中微观组织和性能的变化[J]. 中国电力, 2007, 40(7): 12-16. Zhang Hongjun, Liu Shutao, Fan Changxin. Variation in microstructure and performance during the creep of domestic P91 steel[J]. Electric Power, 2007, 40(7): 12-16. [11]崔正强, 王延峰, 赵双群, 等. T91钢管在600 ℃长期时效后的组织及力学性能[J]. 机械工程材料, 2014, 38(12): 78-81. Cui Zhengqiang, Wang Yanfeng, Zhao Shuangqun, et al. Microstructure and mechanical properties of T91 steel tube after long-term aging at 600 ℃[J]. Materials for Mechanical Engineering, 2014, 38(12): 78-81. [12]范德良, 王志武, 句光宇. P91钢管道异常低硬度部位的组织和性能[J]. 金属热处理, 2020, 45(3): 1-6. Fan Deliang, Wang Zhiwu, Ju Guangyu. Microstructure and properties of P91 steel pipe in abnormal low hardness parts[J]. Heat Treatment of Metals, 2020, 45(3): 1-6. [13]Hald J, Korcakova L. Precipitate stability in creep resistant ferritic steels-Experimental investigations and modeling[J]. ISIJ International, 2003, 43: 420-427. [14]Thomas V, Saroja S, Vijayalakshmi M. Microstructural stability of modified 9Cr-Mo steel during long term exposures at elevated temperatures[J]. Journal of Nuclear Materials, 2008, 378(3): 273-281. |