[1]Luca P, Lago M, Katya B, et al. Effect of the heat treatment on the corrosion resistance of duplex stainless steels[J]. Journal of Materials Engineering and Performance, 2018, 27(8): 3859-3868. [2]Zhang Y, Cheng F, Wu S. Improvement of pitting corrosion resistance of wire arc additive manufactured duplex stainless steel through post-manufacturing heat-treatment[J]. Materials Characterization, 2020, 171: 110743. [3]Vijayalakshmi K, Muthupandi V, Jayachitra R. Influence of heat treatment on the microstructure, ultrasonic attenuation and hardness of SAF 2205 duplex stainless steel[J]. Materials Science and Engineering A, 2011, 529(1): 447-451. [4]常 成, 闫星辰, Gardan Julien, 等. 激光选区熔化成形nano-WC/CX钢微观组织及机械性能初探[J]. 材料研究与应用, 2021, 15(4): 309-317. Chang Cheng, Yan Xingchen, Gardan Julien, et al. Exploration on the microstructure and mechanical properties of the selective laser melted nano-WC/CX steel[J]. Materials Research and Application, 2021, 15(4): 309-317. [5]邓朝阳, 郭一帆, 褚清坤, 等. 基于响应面优化法激光选区熔化AlMgScZr研究[J]. 材料研究与应用, 2021, 15(3): 210-219. Deng Chaoyang, Guo Yifan, Chu Qingkun, et al. Study on selective laser melting process of AlMgScZr based on response surface optimization methodology[J]. Materials Research and Application, 2021, 15(3): 210-219. [6]刘新亮, 胡永俊, 李艳辉, 等. 激光选区熔化成形YSZ/7075铝合金的显微组织与力学性能[J]. 材料研究与应用, 2021, 15(5): 510-519. Liu Xinliang, Hu Yongjun, Li Yanhui, et al. Microstructure and mechanical properties of YSZ/7075 aluminum alloy by selective laser melting[J]. Materials Research and Application, 2021, 15(5): 510-519. [7]孙 凯, 陈 研, 杨绍斌. 时效温度对激光选区熔化TC21钛合金微观组织及硬度的影响[J]. 金属热处理, 2022, 47(4): 155-158. Sun Kai, Chen Yan, Yang Shaobin. Effect of aging temperature on microstructure and hardness of laser selective melting TC21 titanium alloy[J]. Heat Treatment of Metals, 2022, 47(4): 155-158. [8]Saeidi K, Kevetkova L, Lofaj F, et al. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility[J]. Materials Science and Engineering A, 2016, 665: 59-65. [9]Hengsbach F, Koppa P, Duschik K, et al. Duplex stainless steel fabricated by selective laser melting-Microstructural and mechanical properties[J]. Materials and Design, 2017, 133: 136-142. [10]尚 峰. UNS S32707特超级双相不锈钢零部件粉末近净成形技术及组织性能调控[D]. 北京: 北京科技大学, 2021. Shang Feng. Powder near-net shaping technology and control of microstructure and properties of UNS S32707 hyper-duplex stainless steel parts[D]. Beijing: University of Science and Technology Beijing, 2021. [11]杨亚莉. 双相不锈钢在热处理过程中组织及性能的研究[J]. 铸造技术, 2014, 35(12): 2865-2867. Yang Yali. Microstructure and mechanical properties of duplex stainless steel under different heat treatment temperatures[J]. Foundry Technology, 2014, 35(12): 2865-2867. [12]王 进. 固溶处理对S31803双相不锈钢力学行为和耐蚀性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016. Wang Jin. Effects of solution treatment on mechanical and corrosion resistant properties of S31803 duplex stainless steel[D]. Harbin: Harbin Institute of Technology, 2016. [13]Park Y H, Lee J H. The effect of nitrogen on the microstructure and mechanical properties of 25Cr-7Ni-1.5Mo-3W-XN duplex stainless steel casting[J]. Journal of the Korea Foundry Society, 1999, 19(4): 78-84. [14]曾 强, 吴 颖, 肖辉进, 等. 热处理对激光选区熔化制备Inconel 718合金组织和拉伸性能的影响[J]. 金属热处理, 2021, 46(10): 122-127. Zeng Qiang, Wu Ying, Xiao Huijing, et al. Effect of heat treatment on microstructure and tensile properties of Inconel 718 alloy prepared by selective laser melting[J]. Heat Treatment of Metals, 2021, 46(10): 122-127. [15]肖美立, 昝 林, 柯林达, 等. 退火工艺对激光选区熔化成形Ti6Al4V合金组织及室温力学性能的影响[J]. 金属热处理, 2020, 45(8): 108-112. Xiao Meili, Zan Lin, Ke Linda, et al. Effect of annealing process on microstructure and room temperature mechanical properties of selective laser melted Ti6Al4V alloy[J]. Heat Treatment of Metals, 2020, 45(8): 108-112. [16]Mampuya M B, Umba M C, Mutombo K, et al. Effect of heat treatment on the microstructure of duplex stainless steel 2205[J]. Materials Today: Proceedings, 2020, 38: 1107-1112. [17]Putz A, Hosseini V A, Westin E M, et al. Microstructure investigation of duplex stainless steel welds using arc heat treatment technique[J]. Welding in the World, 2020, 64(2), https: //doi. org/10. 1007/s40194-020-0090. [18]Huallpa E A, Monlevade E F D, Campos M A, et al. Use of magnetic Barkhausen noise (MBN) to follow up the formation of sigma phase in SAF2205 (UNS S31803) duplex stainless steel[J]. Materials Research, 2016, 19(10): 8-16. [19]Santos D C D, Magnabosco R. Kinetic study to predict sigma phase formation in duplex stainless steels[J]. Metallurgical and Materials Transactions A, 2016, 47(4): 1554-1565. [20]Liu X, Wang X, Dong C, et al. Effect of cold deformation on the corrosion behavior of UNS 31803 duplex stainless steel in simulated concrete pore solution[J]. Corrosion Science, 2017, 124: 178-192. [21]Ha H Y, Lee T H, Lee C G, et al. Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex stainless steel[J]. Corrosion Science, 2019, 149: 226-235. |