[1]季献武, 段 鹏, 李 驹, 等. T23钢在超超临界1000 MW机组的应用及现状[J]. 华东电力, 2009, 37(12): 2097-2101.
Ji Xianwu, Duan Peng, Li Ju, et al. Application of T23 steel to 1000 MW ultra-supercritical units[J]. East China Electric Power, 2009, 37(12): 2097-2101.
[2]赵钦新, 朱丽慧. 超临界锅炉耐热钢研究[M]. 北京: 机械工业出版社, 2010: 111-123.
[3]Zhu Lihui, Ma Xuening. Microstructural evolution of 2.25Cr-1.6WV-Nb heat resistant steel during creep[J]. Journal of Materials Science and Technology, 2003, 19(2): 126-128.
[4]Komai N, Masuyama F, Igarashi M.10-year experience with T23(2.25Cr-1.6W) and T122(12Cr-0.4Mo-2W) in a power boiler[J]. Journal of Pressure Vessel Technology, 2005, 127(2): 190-196.
[5]刘永超, 陆 皓. 焊后热处理对T23钢热影响粗晶区微观组织的影响[J]. 热加工工艺, 2013, 42(11): 36-38.
Liu Yongchao, Lu Hao. Effect of PWHT on microstructure of coarse-grained heat-affected zone of T23 steel[J]. Hot Working Technology, 2013, 42(11): 36-38.
[6]李立英, 王 勇, 韩 涛, 等. 焊后热处理对ASTM 4130钢焊接粗晶区韧性的影响[J]. 压力容器, 2011, 28(2): 16-21.
Li Liying, Wang Yong, Han Tao, et al. Effect of postweld heat treatment on toughness of simulated coarse-grained heat-affected zone of ASTM 4130 steel[J]. Pressure Vessel Technology, 2011, 28(2): 16-21.
[7]Lundin L, Fällman S, Andren H O. Microstructure and mechanical properties of a 10% chromium steel with improved creep resistance at 600 ℃[J]. Materials Science and Technology, 1997, 13(3): 233-242.
[8]金玉静. T23钢粗晶热影响区再热裂纹敏感性研究[D]. 上海: 上海交通大学, 2015.
Jin Yujing. Study on the susceptibility to reheat cracking in the CGHAZ of T23 steel[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[9]周任远, 朱丽慧, 李世贤. T23钢再热裂纹敏感性的改善及其组织[J]. 钢铁, 2020, 55(3): 80-86.
Zhou Renyuan, Zhu Lihui, Li Shixian. Improvement of reheat-cracking susceptibility and microstructure of T23 steel[J]. Iron and Steel, 2020, 55(3): 80-86.
[10]周任远, 朱丽慧, 李世贤. 改进型T23钢的再热裂纹敏感性[J]. 金属热处理, 2020, 45(1): 20-25.
Zhou Renyuan, Zhu Lihui, Li Shixian. Reheat cracking susceptibility of modified T23 steel[J]. Heat Treatment of Metals, 2020, 45(1): 20-25.
[11]李世贤, 朱丽慧, 周任远, 等. T23低合金耐热钢再热裂纹敏感性研究[J]. 上海金属, 2020, 42(3): 7-11.
Li Shixian, Zhu Lihui, Zhou Renyuan, et al. Study on susceptibility of T23 low-alloy heat-resistant steel to reheat cracking[J]. Shanghai Metals, 2020, 42(3): 7-11.
[12]金玉静, 周 巍. 改良型T23钢CGHAZ再热裂纹开裂特征[J]. 金属热处理, 2017, 42(11): 191-197.
Jin Yujing, Zhou Wei. Characteristics of reheat cracking in CGHAZ of modified T23 steel[J]. Heat Treatment of Metals, 2017, 42(11): 191-197.
[13]Nawrocki J G. Stress-relief cracking of a new ferritic steel[D]. Bethlehem: Lehigh University, 2000.
[14]Li Y, Wang X, Wang J, et al. Stress-relief cracking mechanism in simulated coarse-grained heat-affected zone of T23 steel[J]. Journal of Materials Processing Technology, 2019, 266: 73-81.
[15]王 学, 李 勇, 王家庆, 等. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
Wang Xue, Li Yong, Wang Jiaqing, et al. Effect of high temperature ageing on microstructure and stress-relief cracking susceptibility of coarse grain heat affected zone in T23 steel[J]. Acta Metallurgica Sinica, 2021, 57(6): 736-748.
[16]张 玉, 周晓玲. Cr12MoV钢二次硬化及强化机理研究[J]. 热加工工艺, 2016, 45(8): 213-216, 220.
Zhang Yu, Zhou Xiaoling. Study on secondary hardening and strengthening mechanism of Cr12MoV steel[J]. Hot Working Technology, 2016, 45(8): 213-216, 220.
[17]张俊善. 材料的高温变形与断裂[M]. 北京: 科学出版社, 2007.
[18]Kaftelen H, Baldan A. Comparative creep damage assessments using the various models[J]. Journal of Materials Science, 2004, 39(13): 4199-4210. |