[1]Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Materials Science and Engineering A, 2001, 302(1): 37-45. [2] 邓 彬, 李庆芬, 吴远志, 等. 高应变速率多向锻造对AZ31镁合金组织及耐腐蚀性能的影响[J]. 锻压技术, 2021, 46(8): 7-11, 25. Deng Bin, Li Qingfen, Wu Yuanzhi, et al. Effect of high strain rate multidirectional forging on microstructure and corrosion properties of AZ31 magnesium alloy[J]. Forging and Stamping Technology, 2021, 46(8): 7-11, 25. [3] 丁文江, 吴玉娟, 彭立明, 等. 高性能镁合金研究及应用的新进展[J]. 中国材料进展, 2010, 29(8): 37-45. Ding Wenjiang, Wu Yujuan, Peng Liming, et al. Research and application development of advanced magnesium alloys[J]. Materials China, 2010, 29(8): 37-45. [4] 罗胜蓝, 黄始全, 易幼平. 固溶预处理对AZ80镁合金流变行为和组织的影响[J]. 金属热处理, 2020, 45(1): 76-83. Luo Shenglan, Huang Shiquan, Yi Youping. Effect of per-solution treatment on rheological behavior and microstructure of AZ80 magnersium alloy[J]. Heat Treatment of Metals, 2020, 45(1): 76-83. [5] 梁晓亮. 锻造温度对汽车用镁合金组织和性能的影响[J]. 锻压技术, 2018, 43(9): 169 -174. Liang Xiaoliang. Influence of forging temperature on microstructure and properties of automotive magnesium alloy[J]. Forging and Stamping Technology, 2018, 43(9): 169-174. [6]吴远志, 严红革, 朱素琴, 等. Mg-Zn-Zr 合金高应变速率多向锻造组织演变及力学性能[J]. 材料研究学报, 2014, 28(2): 144-152. Wu Yuanzhi, Yan Hongge, Zhu Suqin, et al. Microstruture evolution and mechanical properties of Mg-Zn-Zr alloy during highstrain rate triaxial-forging[J]. Chinese Journal of Materias Research, 2014, 28(2): 144-152. [7]李庆芬, 吴远志, 邓 彬, 等. 单道次大应变轧制对AZ31镁合金组织与耐腐蚀性能的影响[J]. 矿冶工程, 2019, 39(2): 125-127. Li Qingfen, Wu Yuanzhi, Deng Bin, et al. Effect of single-pass large strain rolling on microstructure and corrosion resistance of AZ31 magnesium alloy[J]. Mining and Metallurgical Engineering, 2019, 39(2): 125-127. [8]许恒源, 甄 睿, 毛忠峰, 等. 热处理对挤压态Mg-6Gd-5Y-1Zn合金组织与性能的影响[J]. 金属热处理, 2020, 45(8): 161-165. Xu Hengyuan, Zhen Rui, Mao Zhongfeng, et al. Effect of heat treatment on microstructure and properties of as-extruded Mg-6Gd-5Y-1Zn alloy[J]. Heat Treatment of Metals, 2020, 45(8): 161-165. [9] Li H, Lu S, Qin W, et al. Improving the wear properties of AZ31 magnesium alloy under vacuum low-temperature condition by plasma electrolytic oxidation coating[J]. Acta Astronautica, 2015, 116: 126-131. [10] An J, Li R G, Lu Y, et al. Dry sliding wear behavior of magnesium alloys[J]. Wear, 2008, 265(1-2): 97-104. [11] Song J, Aa A, Bb B. Effect of CNT on microstructure, dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy[J]. Journal of Materials Research and Technology, 2019, 8( 5): 4273-4286. [12] Zafari A, Chasemi H M. Effect of rare earth elements addition on the tribological behavior of AZ91D magnesium alloy at elevated temperatures[J]. Wear, 2013, 303(1/2): 98-108. [13] Taltavull C, Rodrigo P, Torres B, et al. Dry sliding wear behavior of AM50B magnesium alloy[J]. Materials and Design, 2014, 56: 549-556. [14]邓 彬, 李庆芬, 吴远志, 等. 轧制温度对固溶态AZ31镁合金组织及耐蚀性能的影响[J]. 材料热处理学报, 2021, 42(10): 35-41. Deng Bin, Li Qingfen, Wu Yuanzhi, et al. Effect of rolling temperature on microstructure and corrosion resistance of solution-treated AZ31 alloy[J]. Transactions of Materials and Heat Treatment, 2021, 42(10): 35-41. |