[1] 刘 兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715. Liu Bing, Peng Chaoqun, Wang Richu, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715. [2]顾恺迪, 高志良, 李世江, 等. 7系铝合金在上海轨道交通车辆的应用现状及适用性分析[J]. 城市轨道交通研究, 2022, 25(9): 141-145. Gu Kaidi, Gao Zhiliang, Li Shijiang, et al. Application status and adaptability analysis of 7 series aluminum alloy in shanghai rail transit vehicle[J]. Urban Mass Transit, 2022, 25(9): 141-145. [3]杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2): 76-80. Yang Shoujie, Dai Shenglong. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Reports, 2005, 19(2): 76-80. [4]陈小明, 宋仁国. 7000系铝合金应力腐蚀开裂的研究进展[J]. 腐蚀科学与防护技术, 2010, 22(2): 120-123. Chen Xiaoming, Song Renguo. Progress in research on stress corrosion cracking of 7000 series aluminum alloys[J]. Corrosion Science and Protection Technology, 2010, 22(2): 120-123. [5]谭思治, 罗兵辉, 柏振海, 等. 7N01铝合金应力腐蚀行为研究[J]. 稀有金属, 2021, 45(10): 1162-1170. Tan Sizhi, Luo Binghui, Bo Zhenhai, et al. Stress corrosion behavior of 7N01 aluminum alloy[J]. Chinese Journal of Rare Metals, 2021, 45(10): 1162-1170. [6] Han Junsoo, Ogle Kevin. The anodic and cathodic dissolution of α-phase Zn-68Al in alkaline media[J]. Corrosion Science, 2019, 148: 1-11. [7] Shimizu Kazuyuki, Toda Hiroyuki, Fujihara Hiro, et al. Hydrogen partitioning behavior and related hydrogen embrittlement in Al-Zn-Mg alloys[J]. Engineering Fracture Mechanics, 2019, 216: 1-13. [8]Su Hang, Toda Hiroyuki, Shimizu Kazuyuki, et al. Assessment of hydrogen embrittlement via image-based techniques in Al-Zn-Mg-Cu aluminum alloys[J]. Acta Materialia, 2019, 176: 96-108. [9]Xie Peng, Chen Songyi, Chen Kanghua, et al. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al-Zn-Mg-Cu aluminum alloy by step-quench and aging heat treatment[J]. Corrosion Science, 2019, 161: 108184. [10]金骥戎, 宋仁国, 代春丽, 等. 时效、阴极极化对7050铝合金应力腐蚀敏感性的影响[J]. 材料热处理学报, 2015, 36(3): 90-95. Jin Jirong, Song Renguo, Dai Chunli, et al. Effects of aging and cathodic polarization on susceptibility to SCC of 7050 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(3): 90-95. [11]梁 帅. 回归再时效对7150合金组织和腐蚀性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017. [12]中国机械工程学会热处理学会. 热处理手册[M]. 北京: 机械工业出版社, 2008. [13]刘继华, 李 荻, 刘培英, 等. 时效和回归处理对7075铝合金力学及腐蚀性能的影响[J]. 材料热处理学报, 2002, 23(1): 50-53, 76. Liu Jihua, Li Di, Liu Peiying, et al. Effect of ageing and retrogression treatments on mechanical and corrosion properties of 7075 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2002, 23(1): 50-53, 76. [14] Xu Yongqian, Zhan Lihua. Effect of creep aging process on microstructures and properties of the retrogressed Al-Zn-Mg-Cu alloy[J]. Metals, 2016, 6(8): 189. [15] Pan Yanlin, Zhang Di, Liu Haoran, et al. Precipitation hardening and intergranular corrosion behavior of novel Al-Mg-Zn(-Cu) alloys[J]. Journal of Alloys and Compounds, 2021, 853: 157199. |