[1]薛英岚, 张 静, 刘 宇, 等. “双碳”目标下钢铁行业控煤降碳路线图[J]. 环境科学, 2022, 43(10): 1-21. Xue Yinglan, Zhang Jing, Liu Yu, et al. Roadmap of coal control and carbon reduction in the steel industry under the carbon peak and neutralization target[J]. Environmental Science, 2022, 43(10): 1-21. [2] 吴 凡, 谢文秀. 低碳约束下的中国钢铁行业能耗情景分析[J]. 现代化工, 2019, 39(1): 12-17. Wu Fan, Xie Wenxiu. Energy consumption scenario analysis of China's steel industry under low carbon constraints[J]. Modern Chemical Industry, 2019, 39(1): 12-17. [3]李新创, 李 冰. 全球温控目标下中国钢铁工业低碳转型路径[J]. 钢铁, 2019, 54(8): 224-231. Li Xinchuang, Li Bing. Low carbon transition path of China's iron and steel industry under global temperature-control target[J]. Iron and Steel, 2019, 54(8): 224-231. [4]周 蕾, 魏刚武, 高延祥, 等. 30MnVS非调质钢的开发[J]. 钢铁, 2017, 52(3): 76-81. Zhou Lei, Wei Gangwu, Gao Yanxiang, et al. Development of 30MnVS non-quenched and tempered steel[J]. Iron and Steel, 2017, 52(3): 76-81. [5]王占花, 惠卫军, 张永健, 等. 硫化物变性处理45MnVS非调质钢的高周疲劳性能[J]. 钢铁, 2021, 56(10): 117-126. Wang Zhanhua, Hui Weijun, Zhang Yongjian, et al. High-cycle fatigue properties of microalloyed medium-carbon forging steel 45MnVS with modified sulfide[J]. Iron and Steel, 2021, 56(10): 117-126. [6] 陈思联, 赵晓丽, 惠卫军, 等. 胀断连杆用中碳非调质钢的析出强化行为[J]. 钢铁, 2015, 50(7): 77-83. Chen Silian, Zhao Xiaoli, Hui Weijun, et al. Precipitation behavior of medium-carbon steel for fracture splitting connecting rod[J]. Iron and Steel, 2015, 50(7): 77-83. [7]Jiang B, Fang W, Chen R, et al. Mechanical properties and microstructural characterization of medium carbon non-quenched and tempered steel: Microalloying behavior[J]. Materials Science and Engineering A, 2019, 748: 180-188. [8]陈佳荣. 离子渗氮的铁素体-珠光体非调质钢的组织和性能[J]. 热处理, 2020, 35(4): 12-16. Chen Jiarong. Microstructure and property of non-quenched-and-tempered ferrite-pearlite steels ion-nitrided[J]. Heat Treatment, 2020, 35(4): 12-16. [9] 王 坤, 张莉芹, 刘中柱, 等. N对高强度压力容器钢组织转变的影响[J]. 材料热处理学报, 2021, 42(11): 60-68. Wang Kun, Zhang Liqin, Liu Zhongzhu, et al. Effect of nitrogen on microstructure transformation of high strength pressure vessel steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(11): 60-68. [10]季怀忠, 杨才福, 张永权. 氮在非调质钢中的作用[J]. 钢铁, 2000, 35(3): 66-71. Ji Huaizhong, Yang Caifu, Zhang Yongquan. The role of nitrogen in microalloyed forging steel[J]. Iron and Steel, 2000, 35(3): 66-71. [11]马江南, 杨才福, 王瑞珍. 增氮对钒微合金钢组织和性能的影响[J]. 钢铁, 2015, 50(4): 63-69. Ma Jiangnan, Yang Caifu, Wang Ruizhen. Influence of nitrogen addition on the microstructure and properties of vanadium microalloyed steel[J]. Iron and Steel, 2015, 50(4): 63-69. [12]孙邦明, 季怀忠, 杨才福, 等. V-N微合金化钢筋中钒的析出行为[J]. 钢铁, 2001, 36(2): 44-47. Sun Bangming, Ji Huaizhong, Yang Caifu, et al. Precipitation behavior of vanadium in V-N microalloyed steel[J]. Iron and Steel, 2001, 36(2): 44-47. [13]苏 航, 柴希阳, 潘 涛, 等. 氮含量对正火型钒微合金化钢强化效果和显微组织的影响[J]. 钢铁, 2014, 49(6): 85-90. Su Hang, Chai Xiyang, Pan Tao, et al. Effect of N content on microstructure and strengthening effect in normalized V-N microalloyed steel[J]. Iron and Steel, 2014, 49(6): 85-90. |