[1]Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys[J]. Journal of Materials Science and Technology, 2016, 32(12): 1211-1221. [2]Kumar D, Phanden R K, Thakur L. A review on environment friendly and lightweight magnesium-based metal matrix composites and alloys[J]. Materials Today: Proceedings, 2021, 38(1): 359-364. [3]何杰军, 吴鲁淑. 预孪生纯镁及AZ80镁合金退火过程力学性能演变及其机制[J]. 金属热处理, 2022, 47(5): 65-70. He Jiejun, Wu Lushu. Evolution of mechanical properties and its mechanisms of pre-twinned pure magnesium and AZ80 magnesium alloy during annealing[J]. Heat Treatment of Metals, 2022, 47(5): 65-70. [4]Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89: 92-193. [5]Abbott T B. Magnesium: Industrial and research developments over the last 15 years[J]. Corrosion, 2015, 71(2), 120-127. [6]张子延, 陈 君, 陈晓亚, 等. 固溶时效处理对Mg-4Sm-3Gd-0.5Zr合金显微组织和耐蚀性能的影响[J]. 金属热处理, 2022, 47(4): 10-16. Zhang Ziyan, Chen Jun, Chen Xiaoya, et al. Effect of solution and aging treatment on microstructure and corrosion resistance of Mg-4Sm-3Gd-0.5Zr alloy[J]. Heat Treatment of Metals, 2022, 47(4): 10-16. [7]Arrabal R, Mohedano M, Matykina E. Electrochemical surface treatments for Mg alloys[J]. Encyclopedia of Materials: Metals and Alloys, 2022, 1: 87-112. [8]Correa E, Zuleta A A, Guerra L, et al. Coating development during electroless Ni-B plating on magnesium and AZ91D alloy[J]. Surface and Coatings Technology, 2013, 232: 784-794. [9]王 鑫, 潘希德, 牛 强, 等. AZ33M镁合金激光熔覆Al-Si涂层的组织与性能[J]. 金属热处理, 2021, 46(5): 202-206. Wang Xin, Pan Xide, Niu Qiang, et al. Microstructure and properties of laser clad Al-Si coating on AZ33M magnesium alloy[J]. Heat Treatment of Metals, 2021, 46(5): 202-206. [10]Jothi V, Adesina A Y, Kumar A M, et al. Enhancing the biodegradability and surface protective performance of AZ31 Mg alloy using polypyrrole/gelatin composite coatings with anodized Mg surface[J]. Surface and Coatings Technology, 2019, 381: 125139. [11]申 毅, 薛玉娜, 陈 汉, 等. 微弧表面处理对AZ31B镁合金耐腐蚀及耐腐蚀疲劳性能的影响[J]. 金属热处理, 2022, 47(8): 257-265. Shen Yi, Xue Yuna, Chen Han, et al. Effect of micro-arc surface treatment on corrosion resistance and corrosion fatigue resistance of AZ31B magnesium alloy[J]. Heat Treatment of Metals, 2022, 47(8): 257-265. [12]Wang Y S, Chen M F, Zhao Y. Preparation and corrosion resistance of microarc oxidation-coated biomedical Mg-Zn-Ca alloy in the silicon-phosphorus-mixed electrolyte. ACS Omega, 2019, 4 (25): 20937-20947. [13]周留研, 刘利国, 马 晖, 等. AZ31B镁合金盐浴碳氮钒共渗工艺[J]. 金属热处理, 2022, 47(7): 259-264. Zhou Liuyan, Liu Liguo, Ma Hui, et al. Salt bath vanadium-nitrocarburizing process of AZ31B magnesium alloy[J]. Heat Treatment of Metals, 2022, 47(7): 259-264. [14]Dubé D, Fiset M, Couture A, et al. Characterization and performance of laser melted AZ91D and AM60B[J]. Materials Science and Engineering: A, 2001, 299(1/2): 38-45. [15]Guan Y C, Zhou W, Zheng H Y. Effect of laser surface melting on corrosionbehaviour of AZ91D Mg alloy in simulated-modified body fluid[J]. Journal of Applied Electrochemistry, 2009, 39(9): 1457-1464. [16]Lee W J, Kim J, Park H W. Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation[J]. Journal of Materials Science and Technology, 2019, 35(5): 891-901. [17]Singh A, Harimkar S P. Laser surface engineering of magnesium alloys: A review[J]. JOM, 2012, 64(6): 716-733. [18]Iwaszko J, Strzelecka M. Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy[J]. Optics and Lasers in Engineering, 2016, 81: 63-69. [19]Zhou J Z, Xu J L, Huang S, et al. Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy[J]. Surface and Coatings Technology, 2017, 309: 212-219. [20]Liu C C, Liang J, Zhou J S, et al. Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation[J]. Applied Surface Science, 2016, 382: 47-55. [21]Meng C, Chen Z K, Li G, et al. Effect of laser surface melting on high temperature tensile properties of AZ91D magnesium alloy[J]. Journal of Alloys and Compounds, 2017, 711: 258-266. [22]Cui Z Q, Shi H X, Wang W X, et al. Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1446-1453. [23]葛亚琼, 王文先, 崔泽琴. AZ31B镁合金CO2气体激光熔凝的微观组织与磨损性能[J]. 应用激光, 2014, 34(4): 294-298. Ge Yaqiong, Wang Wenxian, Cui Zeqin. Microstructure and wear resistance of CO2 laser surface melting on AZ31B magnesium[J]. Applied Laser, 2014, 34(4): 294-298. [24]Li Y H, Arthanari S, Guan Y C. Influence of laser surface melting on the properties of MB26 and AZ80 magnesium alloys[J]. Surface and Coatings Technology, 2019, 378: 124964. [25]Liu C C, Liang J, Zhou J S, et al. Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy[J]. Applied Surface Science, 2015, 343: 133-140. [26]Manakari V, Parande G, Gupta M. Selective laser melting of magnesium and magnesium alloy powders: A review[J]. Metals, 2017, 7(1): 2. [27]Wu T C, Joshi S S, Ho Y H, et al. Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy[J]. Journal of Magnesium and Alloys, 2021, 9(4): 1406-1418. [28]Pou-Alvarez P, Riveiro A, Novoa X R, et al. Corrosion control: Laser-guided corrosion control: A new approach to tailor the degradation of Mg-alloys[J]. Small, 2021, 17(18): 2100924. [29]Guan Y C, Zhou W, Li Z L, et al. Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy[J]. Materials and Design, 2013, 52: 452-458. [30]Wu T C, Ho Y H, Joshi S S, et al. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material[J]. Lasers in Medical Science, 2017, 32(4): 797-803. [31]Cui Y. Influence of laser surface melting on tribological behaviour of AZ31B[J]. Surface Engineering, 2016, 34(4): 296-300. [32]Rakesh K R, Bontha S, Ramesh M R, et al. Laser surface melting of Mg-Zn-Dy alloy for better wettability and corrosion resistance for biodegradable implant applications[J]. Applied Surface Science, 2019, 480: 70-82. [33]Zeng C Z, Shen J, He C, et al. An ultrathin melted layer on magnesium alloy manufactured by low power laser[J]. Materials Research Express, 2019, 6(6): 066527. [34]Rakesh K R, Bontha S, Ramesh M R, et al. Degradation, wettability and surface characteristics of laser surface modified Mg-Zn-Gd-Nd alloy[J]. Journal of Materials Science: Materials in Medicine, 2020, 31(5): 42. [35]Zhang K M, Zou J X, Li J, et al. EBSD characterization of the laser remelted surface layers in a commercially pure Mg[J]. Journal of Materials Science and Technology, 2014, 30(3): 263-267. [36]方志浩, 马程鹏, 管迎春, 等. 激光熔化镁合金凝固组织及腐蚀行为[J]. 材料工程, 2017, 45(12): 1-9. Fang Zhihao, Ma Chengpeng, Guan Yingchun, et al. Solidified structure and corrosion behavior of laser-melt magnesium alloy[J]. Journal of Materials Engineering, 2017, 45(12): 1-9. [37]Aulakh S S, Kaushal G. Laser texturing as an alternative to grit blasting for improved coating adhesion on AZ91D magnesium alloy[J]. Transactions of the IMF, 2019, 97(2): 100-108. [38]Demir A G, Furlan V, Lecis N, et al. Laser surface structuring of AZ31 Mg alloy for controlled wettability[J]. Biointerphases, 2014, 9 (2): 029009. [39]Manne B, Thiruvayapati H, Bontha S, et al. Surface design of Mg-Zn alloy temporary orthopaedic implants: Tailoring wettability and biodegradability using laser surface melting[J]. Surface and Coatings Technology, 2018, 347: 337-349. [40]Ho Y H, Vora H D, Dahotre N B. Laser surface modification of AZ31BMg alloy for bio-wettability[J]. Journal of Biomaterials Applications, 2014, 29(7): 915-928. [41]Rakesh K R, Bontha S, Ramesh M R, et al. Laser surface modification of Mg-Zn-Gd alloy: Microstructural, wettability and in vitro degradation aspects[J]. Materials Research Express, 2018, 5(12): 126502. [42]张春燕, 杨 武, 马 超. 镁合金激光重熔后微弧氧化膜的微观组织和耐蚀性能[J]. 材料保护, 2017, 50(2): 5-9. Zhang Chunyan, Yang Wu, Ma Chao. Microstructure and corrosion behavior of micro-arc oxidation composite coating on treated magnesium alloy by laser surface melting[J]. Materials Protection, 2017, 50(2): 5-9. [43]Liu C, Li Q, Liang J, et al. Microstructure and corrosion behaviour of laser surface melting treated WE43 magnesium alloy[J]. RSC Advances, 2016, 6(36): 30642-30651. [44]Fajardo S, Miguélez L, Arenas M A, et al. Corrosion resistance of pulsed laser modified AZ31 Mg alloy surfaces[J]. Journal of Magnesium and Alloys, 2022, 10(3): 756-768. [45]Wang L, Zhou J, Liang J, et al. Microstructure and corrosion behavior of plasma electrolytic oxidation coated magnesium alloy pretreated by laser surface melting[J]. Surface and Coatings Technology, 2012, 206: 3109-3115. [46]Khalfaoui W, Valerio E, Masse J E, et al. Excimer laser treatment of ZE41 magnesium alloy for corrosion resistance and microhardness improvement[J]. Optics and Lasers in Engineering, 2010, 48(9): 926-931. [47]Taltavull C, Torres B, Lopez A J, et al. Corrosion behaviour of laser surface melted magnesium alloy AZ91D[J]. Materials and Design, 2014, 57(5): 40-50. [48]Coy A E, Viejo F, Garcia-Garcia F J, et al. Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy[J]. Corrosion Science, 2010, 52(2): 387-397. [49]Zoroddu M A, Aaseth J, Crisponi G, et al. The essential metals for humans: A brief overview[J]. Journal of Inorganic Biochemistry, 2019, 195: 120-129. [50]Li L Y, Cui L Y, Zeng R C, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys-a review[J]. Acta Biomater, 2018, 79: 23-36. [51]Wagener V, Schilling A, Mainka A, et al. Cell adhesion on surface-functionalized magnesium[J]. Applied Materials and Interfaces, 2016, 8(19): 11998-12006. [52]Virtanen S. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility[J]. Materials Science and Engineering B, 2011, 176(20): 1600-1608. [53]Alvarez-Lopez M, Pereda M D, Del Valle J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J]. Acta Biomaterialia, 2010, 6(5): 1763-1771. [54]Pacha-Olivenza M A, Galván J C, Porro J A, et al. Efficacy of laser shock processing of biodegradable Mg and Mg-1Zn alloy on their in vitro corrosion and bacterial response[J]. Surface and Coatings Technology, 2020, 384: 125320. [55]Zhang P J, Zou X R, Zhang S L, et al. Improve the binding force of PEEK coating with Mg surface by femtosecond lasers induced micro/nanostructures[J]. Journal of Materials Science, 2021, 56(23): 13313-13322. [56]高亚丽, 马广超, 张海波, 等. AZ91HP镁合金激光熔凝层的耐蚀性和生物相容性[J]. 材料热处理学报, 2015, 36(1): 147-152. Gao Yali, Ma Guangchao, Zhang Haibo, et al. Corrosion resistance and biocompatibility of AZ91HP alloy melted layer treated by laser[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 147-152. [57]郭长刚, 许益蒙, 王凌倩, 等. 激光表面强化对镁合金在模拟体液中腐蚀行为的影响[J]. 表面技术, 2017, 46(8): 188-194. Guo Changgang, Xu Yimeng, Wang Lingqian, et al. Effect of laser surface strengthening on corrosion behavior of magnesium alloy in simulated body fluid[J]. Surface Technology, 2017, 46(8): 188-194. [58]Park J, Park B I, Son Y J, et al. Femtosecond laser-mediated anchoring of polymer layers on the surface of a biodegradable metal[J]. Journal of Magnesium and Alloys, 2021, 9(4): 1373-1381. [59]Guo C G, Wang L Q, Zhou J S, et al. Effect of grain refinement by laser surface treatment on cell adhesion behavior of AZ91D magnesium alloy[J]. Journal of Testing and Evaluation, 2021, 49(3): 1705-1715. |