[1]苏 艳, 苏 虹, 胡秉飞, 等. 低温环境对3种结构钢力学性能的影响研究[J]. 装备环境工程, 2022, 19(3): 118-125. Su Yan, Su Hong, Hu Bingfei, et al. Influence of low temperature environment on mechanical performance of three structural steels[J]. Equipment Environmental Engineering, 2022, 19(3): 118-125. [2]李 敬, 杨跃辉, 张晓娟, 等. 逆转变奥氏体对中Mn钢低温冲击断裂过程的影响[J]. 金属热处理, 2021, 46(11): 147-151. Li Jing, Yang Yuehui, Zhang Xiaojuan, et al. Effect of reversed austenite on low temperature impact fracture process of medium Mn steel[J]. Heat Treatment of Metals, 2021, 46(11): 147-151. [3]穆妍君, 杨 峻, 文翰剡. 30CrMnSiA钢螺栓的断裂失效分析[J]. 金属热处理, 2014, 39(1): 141-143. Mu Yanjun, Yang Jun, Wen Hanyan. Fracture failure analysis of 30CrMnSiA steel bolts[J]. Heat Treatment of Metals, 2014, 39(1): 141-143. [4]赵培林, 宗 云. 显微组织对海洋工程用热轧H型钢低温断裂韧性的影响[J]. 金属热处理, 2017, 42(8): 68-72. Zhao Peilin, Zong Yun. Influence of microstructure on low temperature impact toughness of hot rolled H-shape steel for marine engineering[J]. Heat Treatment of Metals, 2017, 42(8): 68-72. [5]李 玲, 甄延波, 孟庆宇, 等. 30CrMnSiA提拉杆断裂失效分析[J]. 热加工工艺, 2020, 49(10): 159-161. Li Ling, Zhen Yanbo, Meng Qingyu, et al. Fracture failure analysis of 30CrMnSiA pull bar[J]. Hot Working Technology, 2020, 49(10): 159-161. [6]史 伟, 赵江涛, 王顺花, 等. 12Cr2Mo1R钢的韧脆转变机理[J]. 金属热处理, 2015, 40(2): 110-113. Shi Wei, Zhao Jiangtao, Wang Shunhua, et al. Toughness-brittle transition mechanism of 12Cr2Mo1R steel[J]. Heat Treatment of Metals, 2015, 40(2): 110-113. [7]宋 婕, 常英珂, 吴瑞德, 等. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 1-5. Song Jie, Chang Yingke, Wu Ruide, et al. Ductile-brittle transition and embrittlement mechanism of 13Cr11N2MoV martensite heat-resistant stainless steel[J]. Materials Reports, 2022, 36(4): 1-5. [8]熊祥江, 范 明, 杨小军, 等. 大口径厚规格X80管线钢的低温断裂控制[J]. 金属热处理, 2021, 46(4): 227-231. Xiong Xiangjiang, Fan Ming, Yang Xiaojun, et al. Low temperature fracture control of heavy-gauge X80 pipeline steel for large diameter pipe[J]. Heat Treatment of Metals, 2021, 46(4): 227-231. [9]杨小龙, 臧 淼, 郑治秀, 等. 改善 L450M管线钢低温韧性的研究[J]. 热加工工艺, 2021, 50(11): 55-59. Yang Xiaolong, Zang Miao, Zheng Zhixiu, et al. Research on improving low temperature toughness of L450M pipeline steel[J]. Hot Working Technology, 2021, 50(11): 55-59. [10]程正翠, 朱绍峰. 30CrMnSiA钢锥体构件低应力脆性断裂分析[J]. 金属热处理, 2018, 43(5): 240-243. Cheng Zhengcui, Zhu Shaofeng. Low stress fracture analysis of 30CrMnSiA steel part[J]. Heat Treatment of Metals, 2018, 43(5): 240-243. [11]穆雷雅, 陈 炜, 王思倩, 等. 低压转子用25Cr2Ni4MoV钢低温性能的研究[J]. 热处理, 2020, 35(2): 13-16. Mu Leiya, Chen Wei, Wang Siqian, et al. Low-temperature mechanical properties of 25Cr2Ni4MoV steel used for low-pressure rotor[J]. Heat Treatment, 2020, 35(2): 13-16. [12]许 良, 许 赞, 周 松, 等. 低温下转向架钢Q355NHC冲击韧性和断口特征研究[J]. 热加工工艺, 2020, 49(4): 25-33. Xu Liang, Xu Zan, Zhou Song, et al. Study on impact toughness and fracture features of Q355NHC steel for bogies at low temperature[J]. Hot Working Technology, 2020, 49(4): 25-33. [13]杨跃辉, 梁国俐, 苑少强. 中碳25Mn钢低温冲击断裂过程中的变形机制[J]. 材料热处理学报, 2021, 42(2): 98-102. Yang Yuehui, Liang Guoli, Yuan Shaoqiang. Deformation mechanism of medium carbon 25Mn steel during low temperature impact fracture[J]. Transactions of Materials and Heat Treatment, 2021, 42(2): 98-102. [14]保 顺, 刘荣佩, 王宝顺, 等. 铈对S32750超级双相不锈钢低温冲击性能的影响[J]. 金属热处理, 2021, 46(11): 42-47. Bao Shun, Liu Rongpei, Wang Baoshun, et al. Effect of cerium additive on low temperature impact properties of S32750 super duplex stainless steel[J]. Heat Treatment of Metals, 2021, 46(11): 42-47. |