[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [3]Zhang Y, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys[J]. JOM, 2012, 64(7): 830-838. [4]Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. [5]Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys-A review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128. [6]Hua X J, Hu P, Xing H R, et al. Development and property tuning of refractory high-entropy alloys: A review[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. [7]Pang J, Zhang H, Zhang L, et al. A ductile Nb40Ti25Al15V10-Ta5Hf3W2 refractory high entropy alloy with high specific strength for high-temperature applications[J]. Materials Science and Engineering A, 2022, 831: 142290. [8]Pang J, Zhang H, Zhang L, et al. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength[J]. Materials Letters, 2021, 290: 129428. [9]Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. [10]Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. [11]Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. Journal of Materials Science, 2012, 47(9): 4062-4074. [12]Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high-entropy alloys[J]. Journal of Applied Physics, 2016, 120(16): 164902. [13]Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters, 2015, 142: 153-155. [14]Yurchenko N Y, Stepanov N D, Zherebtsov S V, et al. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x=0-1.5) high-entropy alloys[J]. Materials Science and Engineering A, 2017, 704: 82-90. [15]Chen H, Kauffmann A, Seils S, et al. Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta-Nb-Mo-Cr-Ti-Al[J]. Acta Materialia, 2019, 176: 123-133. [16]Tang Q, Su H, Peng S, et al. Microstructure and mechanical properties of low-density, B2-ordered AlNbZrTix multi-principal element alloys[J]. 2022, 12(6): 932. [17]Zhang C, Macdonald B E, Guo F, et al. Cold-workable refractory complex concentrated alloys with tunable microstructure and good room-temperature tensile behavior[J]. Scripta Materialia, 2020, 188: 16-20. [18]Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy[J]. Acta Materialia, 2014, 65: 85-97. [19]Zou Y, Okle P, Yu H, et al. Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies[J]. Scripta Materialia, 2017, 128: 95-99. [20]Leitner K, Scheiber D, Jakob S, et al. How grain boundary chemistry controls the fracture mode of molybdenum[J]. Materials and Design, 2018, 142: 36-43. [21]Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys[J]. Materials Science and Engineering A, 2018, 712: 380-385. [22]Wang Z, Wu H, Wu Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering[J]. Materials Today, 2022, 54: 83-89. [23]Lejček P, Všianská M, ob M. Recent trends and open questions in grain boundary segregation[J]. Journal of Materials Research, 2018, 33(18): 2647-2660. |