[1]王敬忠, 刘正东, 包汉生, 等. 中国超(超)临界电站锅炉关键材料用钢及合金的研究现状[J]. 钢铁, 2015, 50(8): 1-9. Wang Jingzhong, Liu Zhengdong, Bao Hansheng, et al. Study of steel and alloys for ultra-supercritical power plant in China[J]. Iron and Steel, 2015, 50(8): 1-9. [2]于鸿垚, 董建新, 谢锡善, 等. 新型奥氏体耐热钢HR3C的研究进展[J]. 世界钢铁, 2010(2): 42-49. Yu Hongyao, Dong Jianxin, Xie Xishan, et al. Research development of new austenitic heat-resistant steel HR3C[J]. World Iron & Steel, 2010(2): 42-49. [3]李太江, 刘福广, 范长信, 等. 超(超)临界锅炉用新型奥氏体耐热钢HR3C的高温时效脆化研究[J]. 热加工工艺, 2010, 39(14): 43-46. Li Taijiang, Liu Fuguang, Fan Changxin, et al. Study on aging embrittlement of new type austenitic heat resistant steel HR3C used in USC boiler[J]. Hot Working Technology, 2010, 39(14): 43-46. [4]雍岐龙. 钢铁中的第二相[M]. 北京: 冶金工业出版社, 2006. [5]Wang J Z, Liu Z D, Bao H S, et al. Effect of ageing at 700 ℃ on microstructure and mechanical properties of S31042 heat resistant steel[J]. Journal of Iron and Steel Research International, 2013, 20(4): 54-58. [6]方园园, 赵 杰, 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2020, 46(7): 844-849. Fang Yuanyuan, Zhao Jie, Li Xiaona. Precipitates in HR3C steel aged at high temperature[J]. Acta Metallurgica Sinica, 2020, 46(7): 844-849. [7]方园园. 新型奥氏体耐热钢HR3C的析出相研究[D]. 大连: 大连理工大学, 2010. [8]杨 旭. 高铬马氏体耐热钢组织老化、性能退化及剩余寿命评估[D]. 秦皇岛: 燕山大学, 2017. [9]Yang Y, Zhu L, Wang Q, et al. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep[J]. Materials Science and Engineering A, 2014, 608: 164-173. [10]杜宝帅, 魏玉忠, 张忠文, 等. 高温服役4.2万小时超(超)临界机组用HR3C钢组织与性能[J]. 材料热处理学报, 2014, 35(12): 84-89. Du Baoshuai, Wei Yuzhong, Zhang Zhongwen, et al. Microstructure and properties of HR3C steel used in ultra-supercritical units after 42 000 h exposure to elevated temperature[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 84-89. [11]王 斌. S31042奥氏体耐热钢组织性能优化研究[D]. 沈阳: 东北大学, 2013. [12]杜宝帅, 刘 睿, 张忠文, 等. 高温长时服役HR3C钢焊接接头的组织与性能[J]. 金属热处理, 2015, 40(2): 52-55. Du Baoshuai, Liu Rui, Zhang Zhongwen, et al. Microstructure and properties of HR3C steel weld joint exposed to elevated temperature for long-term[J]. Heat Treatment of Metals, 2015, 40(2): 52-55. [13]潘金生, 田民波, 仝健民. 材料科学基础[M]. 北京: 清华大学出版社, 2011. [14]Wang Bing, Liu Zhendong, Cheng Shichang, et al. Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature[J]. Journal of Iron and Steel Research International, 2014, 21(8): 765-773. [15]Zielinski A. Austenitic steels for boiler elements in USC power plants[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2014, 57(2): 68-75. [16]Farooq M. Strengthening and degradation mechanisms in austenitic stainless steels at elevated temperature[D]. Royal Institute of Technology (KTH), 2013. [17]彭志方, 任 文, 杨 超, 等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系[J]. 金属学报, 2015, 51(11): 1325-1332. Peng Zhifang, Ren Wen, Yang Chao, et al. The relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service[J]. Acta Metallurgica Sinica, 2015, 51(11): 1325-1332. [18]Bhadeshia S H, Honeycombe S R. Steels Microstructure and Properties[M]. Fourth ed, Oxford: Matthew Deans, 2016. [19]Maruyama K, Sawada K, Kot J, et al. Strengthening mechanisms of creep resistant tempered martensitic steel[J]. ISIJ International, 2001, 6(41): 641-653. [20]Prawoto Y, Jasmawati N, Sumeru K, et al. Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel[J]. Journal of Materials Science & Technology, 2012, 28(5): 461-466. |