[1]Somova E V, Tugov A N, Tumanovskii A G. Overview of foreign boiler designs for ultra supercritical (USC) boilers and prospects for development of USC power units in Russia[J]. Thermal Engineering, 2021, 68: 417-433. [2]杜冬梅, 曹冬惠, 何 青. “双碳”目标下我国电力行业低碳转型的思路探讨[J]. 热力发电, 2022, 51(10): 1-9. Du Dongmei, Cao Donghui, He Qing. Discussion on low-carbon transformation of China's power industry under the “double-carbon” goal[J]. Thermal Power Generation, 2022, 51(10): 1-9. [3]葛 挺. “十四五”期间火电技术发展方向分析[J]. 河南电力, 2020(S2): 1-3. [4]Wang Q B, Xin R S, Wang Z C et al. Microstructure and its effect on high temperature tensile properties of T92/HR3C dissimilar weld joints[J]. Journal of Manufacturing Processes, 2022, 82: 792-799. [5]康 举, 王启冰, 王智春, 等. 超超临界火电机组异种钢焊接接头高温断裂机理综述[J]. 机械工程学报, 2022, 58(24): 58-83. Kang Ju, Wang Qibing, Wang Zhichun, et al. A review on high temperature rupture mechanisms of dissimilar metal weldedjoints for the USC thermal power units[J]. Journal of Mechanical Engineering, 2022, 58(24): 58-83. [6]杨庆旭, 王 学, 马君鹏, 等. 超超临界锅炉水冷壁T23/12Cr1MoV异种钢焊接接头焊后热处理裂纹分析[J]. 金属热处理, 2021, 46(7): 218-222. Yang Qingxu, Wang Xue, Ma Junpeng, et al. Crack analysis of T23/12Cr1MoV dissimilar steel welded joints during PWHT in the water-wall of USC boiler[J]. Heat Treatment of Metals, 2021, 46(7): 218-222. [7]王智春, 韩哲文, 康 举, 等. 长期高温时效对12Cr1MoV/TP347H异种钢接头组织及碳迁移的影响[J]. 材料热处理学报, 2022, 43(4): 170-177. Wang Zhichun, Han Zhewen, Kang Ju, et al. Influence of long-term elevated temperature aging on the microstructure and carbon migration of 12Cr1MoV/TP347H dissimilar metal welded joints[J]. Transactions of Materials and Heat Treatment, 2022, 43(4): 170-177. [8]许 乐, 温建锋, 涂善东. P92 钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报, 2019, 40(8): 80-88. Xu Le, Wen Jianfeng, Tu Shandong. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(8): 80-88. [9]金震杰, 刘川槐, 曹 宇, 等. T91/TP347H异种钢焊接接头过热工况下蠕变损伤模型研究[J]. 压力容器, 2021, 38(9): 18-26. Jin Zhenjie, Liu Chuanhuai, Cao Yu, et al. Research on creep damage model of T91/TP347H dissimilar steel welded joints under overheating condition[J]. Pressure Vessel Technology, 2021, 38(9): 18-26. [10]Kang J, Wang Q B, Wang Z C, et al. Fatigue fracture mechanism of T92/HR3C dissimilar metal weld joints at elevated temperature[J]. Materials Characterization, 2022, 190: 112081. [11]周亚明, 汤淳坡, 尹少华, 等. 超超临界机组高温再热器出口爆管原因分析[J]. 焊接技术, 2020, 49(8): 96-99. Zhou Yaming, Tang Chunpo, Yin Shaohua, et al. Analysis of tube burst at the outlet of high temperature reheater of ultra-supercritical unit[J]. Welding Technology, 2020, 49(8): 96-99. [12]张文钺. 焊接冶金学 基本原理[M]. 北京: 机械工业出版社, 1999年. Zhang Wenyue. Welding Metallurgy Basic Principle[M]. Beijing: Machinery Industry Press, 1999. [13]Xue J L, Guo W, Yang J, et al. In-situ observation of microcrack initiation and damage nucleation modes on the HAZ of laser-welded DP1180 joint[J]. Journal of Materials Science and Technology, 2023, 148: 138-149. [14]银润邦, 林宝森, 莫其鹏, 等. 电站辅机中12Cr2Mo1VR/20MnMoNb异种钢接头焊接及热处理[J]. 金属热处理, 2021, 46(10): 155-162. Yin Runbang, Lin Baosen, Mo Qipeng, et al. Effect of tempering temperature on hydrogen behavior of Nb-containing HSLA steel[J]. Heat Treatment of Metals, 2021, 46(10): 155-162. [15]Seo W G, Suh J Y, Shim J H, et al. Effect of post-weld heat treatment on the microstructure and hardness of P92 steel in IN740H/P92 dissimilar weld joints[J]. Materials Characterization, 2020, 160: 110083. [16]David S A, Siefert J A, Feng Z. Welding and weldability of candidate ferritic alloys for future advancedultrasupercritical fossil power plants[J]. Science and Technology of Welding and Joining, 2013, 18(8): 631-651. [17]Zhang Y, Jing H, Xu L, et al. Fusion boundary evolution, precipitationbehaviour, and interaction with dislocations in an Fe-22Cr-15Ni steel weldment during long-term creep[J]. Progress in Natural Science: Materials International, 2019, 29(1): 41-49. [18]Zhang Q B, Zhang J X, Wei W L. Effect of temperature on the cyclic stress amplitude of ENiCrFe-1 Ni-based alloy electrode and its mechanism[C]//Materials Science Forum. Trans Tech Publications Ltd, 2021, 1035: 259-263. [19]Giroux P F, Dalle F, Sauzay M, et al. Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature[J]. Materials Science and Engineering A, 2010, 527(16/17): 3984-3993. [20]Rai R, Sahu J, Paulose N, et al. Tensile deformation micro-mechanisms of a polycrystalline nickel base superalloy: From jerky flow to softening[J]. Materials Science and Engineering A, 2021, 807: 140905. |